| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi1 236 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1461 sbrim 1985 sbal1yz 2030 sbmo 2114 mo4f 2115 moanim 2129 necon4addc 2447 necon1bddc 2454 nfraldya 2542 r3al 2551 r19.23t 2614 ceqsralt 2801 ralab 2937 ralrab 2938 euind 2964 reu2 2965 rmo4 2970 rmo3f 2974 rmo4f 2975 reuind 2982 rmo3 3094 dfdif3 3287 raldifb 3317 unss 3351 ralunb 3358 inssdif0im 3532 ssundifim 3548 raaan 3570 pwss 3637 ralsnsg 3675 ralsns 3676 disjsn 3700 snssOLD 3765 snssb 3772 unissb 3886 intun 3922 intpr 3923 dfiin2g 3966 dftr2 4152 repizf2lem 4213 axpweq 4223 zfpow 4227 axpow2 4228 zfun 4489 uniex2 4491 setindel 4594 setind 4595 elirr 4597 en2lp 4610 zfregfr 4630 tfi 4638 raliunxp 4827 dffun2 5290 dffun4 5291 dffun4f 5296 dffun7 5307 funcnveq 5346 fununi 5351 pw1dc0el 7023 fiintim 7043 addnq0mo 7580 mulnq0mo 7581 addsrmo 7876 mulsrmo 7877 prime 9492 raluz2 9720 ralrp 9817 modfsummod 11844 nnwosdc 12435 isprm4 12516 dedekindicclemicc 15179 bdcriota 15957 bj-uniex2 15990 bj-ssom 16010 |
| Copyright terms: Public domain | W3C validator |