Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi1 235 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imbi12i 238 ancomsimp 1433 sbrim 1949 sbal1yz 1994 sbmo 2078 mo4f 2079 moanim 2093 necon4addc 2410 necon1bddc 2417 nfraldya 2505 r3al 2514 r19.23t 2577 ceqsralt 2757 ralab 2890 ralrab 2891 euind 2917 reu2 2918 rmo4 2923 rmo3f 2927 rmo4f 2928 reuind 2935 rmo3 3046 dfdif3 3237 raldifb 3267 unss 3301 ralunb 3308 inssdif0im 3482 ssundifim 3498 raaan 3521 pwss 3582 ralsnsg 3620 ralsns 3621 disjsn 3645 snss 3709 unissb 3826 intun 3862 intpr 3863 dfiin2g 3906 dftr2 4089 repizf2lem 4147 axpweq 4157 zfpow 4161 axpow2 4162 zfun 4419 uniex2 4421 setindel 4522 setind 4523 elirr 4525 en2lp 4538 zfregfr 4558 tfi 4566 raliunxp 4752 dffun2 5208 dffun4 5209 dffun4f 5214 dffun7 5225 funcnveq 5261 fununi 5266 pw1dc0el 6889 fiintim 6906 addnq0mo 7409 mulnq0mo 7410 addsrmo 7705 mulsrmo 7706 prime 9311 raluz2 9538 ralrp 9632 modfsummod 11421 nnwosdc 11994 isprm4 12073 dedekindicclemicc 13404 bdcriota 13918 bj-uniex2 13951 bj-ssom 13971 |
Copyright terms: Public domain | W3C validator |