| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi1 236 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1459 sbrim 1983 sbal1yz 2028 sbmo 2112 mo4f 2113 moanim 2127 necon4addc 2445 necon1bddc 2452 nfraldya 2540 r3al 2549 r19.23t 2612 ceqsralt 2798 ralab 2932 ralrab 2933 euind 2959 reu2 2960 rmo4 2965 rmo3f 2969 rmo4f 2970 reuind 2977 rmo3 3089 dfdif3 3282 raldifb 3312 unss 3346 ralunb 3353 inssdif0im 3527 ssundifim 3543 raaan 3565 pwss 3631 ralsnsg 3669 ralsns 3670 disjsn 3694 snssOLD 3758 snssb 3765 unissb 3879 intun 3915 intpr 3916 dfiin2g 3959 dftr2 4143 repizf2lem 4204 axpweq 4214 zfpow 4218 axpow2 4219 zfun 4480 uniex2 4482 setindel 4585 setind 4586 elirr 4588 en2lp 4601 zfregfr 4621 tfi 4629 raliunxp 4818 dffun2 5280 dffun4 5281 dffun4f 5286 dffun7 5297 funcnveq 5336 fununi 5341 pw1dc0el 7007 fiintim 7027 addnq0mo 7559 mulnq0mo 7560 addsrmo 7855 mulsrmo 7856 prime 9471 raluz2 9699 ralrp 9796 modfsummod 11711 nnwosdc 12302 isprm4 12383 dedekindicclemicc 15046 bdcriota 15752 bj-uniex2 15785 bj-ssom 15805 |
| Copyright terms: Public domain | W3C validator |