Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi1 235 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imbi12i 238 ancomsimp 1428 sbrim 1944 sbal1yz 1989 sbmo 2073 mo4f 2074 moanim 2088 necon4addc 2406 necon1bddc 2413 nfraldya 2501 r3al 2510 r19.23t 2573 ceqsralt 2753 ralab 2886 ralrab 2887 euind 2913 reu2 2914 rmo4 2919 rmo3f 2923 rmo4f 2924 reuind 2931 rmo3 3042 dfdif3 3232 raldifb 3262 unss 3296 ralunb 3303 inssdif0im 3476 ssundifim 3492 raaan 3515 pwss 3575 ralsnsg 3613 ralsns 3614 disjsn 3638 snss 3702 unissb 3819 intun 3855 intpr 3856 dfiin2g 3899 dftr2 4082 repizf2lem 4140 axpweq 4150 zfpow 4154 axpow2 4155 zfun 4412 uniex2 4414 setindel 4515 setind 4516 elirr 4518 en2lp 4531 zfregfr 4551 tfi 4559 raliunxp 4745 dffun2 5198 dffun4 5199 dffun4f 5204 dffun7 5215 funcnveq 5251 fununi 5256 pw1dc0el 6877 fiintim 6894 addnq0mo 7388 mulnq0mo 7389 addsrmo 7684 mulsrmo 7685 prime 9290 raluz2 9517 ralrp 9611 modfsummod 11399 nnwosdc 11972 isprm4 12051 dedekindicclemicc 13250 bdcriota 13765 bj-uniex2 13798 bj-ssom 13818 |
Copyright terms: Public domain | W3C validator |