![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi1 236 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imbi12i 239 ancomsimp 1440 sbrim 1956 sbal1yz 2001 sbmo 2085 mo4f 2086 moanim 2100 necon4addc 2417 necon1bddc 2424 nfraldya 2512 r3al 2521 r19.23t 2584 ceqsralt 2764 ralab 2897 ralrab 2898 euind 2924 reu2 2925 rmo4 2930 rmo3f 2934 rmo4f 2935 reuind 2942 rmo3 3054 dfdif3 3245 raldifb 3275 unss 3309 ralunb 3316 inssdif0im 3490 ssundifim 3506 raaan 3529 pwss 3591 ralsnsg 3629 ralsns 3630 disjsn 3654 snssOLD 3718 snssb 3725 unissb 3839 intun 3875 intpr 3876 dfiin2g 3919 dftr2 4103 repizf2lem 4161 axpweq 4171 zfpow 4175 axpow2 4176 zfun 4434 uniex2 4436 setindel 4537 setind 4538 elirr 4540 en2lp 4553 zfregfr 4573 tfi 4581 raliunxp 4768 dffun2 5226 dffun4 5227 dffun4f 5232 dffun7 5243 funcnveq 5279 fununi 5284 pw1dc0el 6910 fiintim 6927 addnq0mo 7445 mulnq0mo 7446 addsrmo 7741 mulsrmo 7742 prime 9351 raluz2 9578 ralrp 9674 modfsummod 11465 nnwosdc 12039 isprm4 12118 dedekindicclemicc 14080 bdcriota 14605 bj-uniex2 14638 bj-ssom 14658 |
Copyright terms: Public domain | W3C validator |