| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi1 236 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1459 sbrim 1983 sbal1yz 2028 sbmo 2112 mo4f 2113 moanim 2127 necon4addc 2445 necon1bddc 2452 nfraldya 2540 r3al 2549 r19.23t 2612 ceqsralt 2798 ralab 2932 ralrab 2933 euind 2959 reu2 2960 rmo4 2965 rmo3f 2969 rmo4f 2970 reuind 2977 rmo3 3089 dfdif3 3282 raldifb 3312 unss 3346 ralunb 3353 inssdif0im 3527 ssundifim 3543 raaan 3565 pwss 3631 ralsnsg 3669 ralsns 3670 disjsn 3694 snssOLD 3758 snssb 3765 unissb 3879 intun 3915 intpr 3916 dfiin2g 3959 dftr2 4143 repizf2lem 4204 axpweq 4214 zfpow 4218 axpow2 4219 zfun 4479 uniex2 4481 setindel 4584 setind 4585 elirr 4587 en2lp 4600 zfregfr 4620 tfi 4628 raliunxp 4817 dffun2 5278 dffun4 5279 dffun4f 5284 dffun7 5295 funcnveq 5331 fununi 5336 pw1dc0el 6990 fiintim 7010 addnq0mo 7542 mulnq0mo 7543 addsrmo 7838 mulsrmo 7839 prime 9454 raluz2 9682 ralrp 9779 modfsummod 11688 nnwosdc 12279 isprm4 12360 dedekindicclemicc 15022 bdcriota 15683 bj-uniex2 15716 bj-ssom 15736 |
| Copyright terms: Public domain | W3C validator |