| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version | ||
| Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | imbi1 236 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 ancomsimp 1483 sbrim 2007 sbal1yz 2052 sbmo 2137 mo4f 2138 moanim 2152 necon4addc 2470 necon1bddc 2477 nfraldya 2565 r3al 2574 r19.23t 2638 ceqsralt 2827 ralab 2963 ralrab 2964 euind 2990 reu2 2991 rmo4 2996 rmo3f 3000 rmo4f 3001 reuind 3008 rmo3 3121 dfdif3 3314 raldifb 3344 unss 3378 ralunb 3385 inssdif0im 3559 ssundifim 3575 raaan 3597 pwss 3665 ralsnsg 3703 ralsns 3704 disjsn 3728 snssOLD 3793 snssb 3800 unissb 3917 intun 3953 intpr 3954 dfiin2g 3997 dftr2 4183 repizf2lem 4244 axpweq 4254 zfpow 4258 axpow2 4259 zfun 4524 uniex2 4526 setindel 4629 setind 4630 elirr 4632 en2lp 4645 zfregfr 4665 tfi 4673 raliunxp 4862 dffun2 5327 dffun4 5328 dffun4f 5333 dffun7 5344 funcnveq 5383 fununi 5388 pw1dc0el 7069 fiintim 7089 addnq0mo 7630 mulnq0mo 7631 addsrmo 7926 mulsrmo 7927 prime 9542 raluz2 9770 ralrp 9867 modfsummod 11964 nnwosdc 12555 isprm4 12636 dedekindicclemicc 15300 bdcriota 16204 bj-uniex2 16237 bj-ssom 16257 |
| Copyright terms: Public domain | W3C validator |