Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imbi1i | GIF version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi1i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi1 235 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imbi12i 238 ancomsimp 1420 sbrim 1936 sbal1yz 1981 sbmo 2065 mo4f 2066 moanim 2080 necon4addc 2397 necon1bddc 2404 nfraldya 2492 r3al 2501 r19.23t 2564 ceqsralt 2739 ralab 2872 ralrab 2873 euind 2899 reu2 2900 rmo4 2905 rmo3f 2909 rmo4f 2910 reuind 2917 rmo3 3028 dfdif3 3217 raldifb 3247 unss 3281 ralunb 3288 inssdif0im 3461 ssundifim 3477 raaan 3500 pwss 3559 ralsnsg 3596 ralsns 3597 disjsn 3621 snss 3685 unissb 3802 intun 3838 intpr 3839 dfiin2g 3882 dftr2 4064 repizf2lem 4122 axpweq 4132 zfpow 4136 axpow2 4137 zfun 4394 uniex2 4396 setindel 4497 setind 4498 elirr 4500 en2lp 4513 zfregfr 4533 tfi 4541 raliunxp 4727 dffun2 5180 dffun4 5181 dffun4f 5186 dffun7 5197 funcnveq 5233 fununi 5238 pw1dc0el 6856 fiintim 6873 addnq0mo 7367 mulnq0mo 7368 addsrmo 7663 mulsrmo 7664 prime 9263 raluz2 9490 ralrp 9582 modfsummod 11355 isprm4 11995 dedekindicclemicc 13010 bdcriota 13458 bj-uniex2 13491 bj-ssom 13511 |
Copyright terms: Public domain | W3C validator |