| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
| 4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 698 limelon 4435 eldifpw 4513 ssonuni 4525 onsucuni2 4601 peano2 4632 limom 4651 elrnmpt1 4918 cnveqb 5126 cnveq0 5127 relcoi1 5202 ndmfvg 5592 ffvresb 5728 caovord3d 6098 poxp 6299 nnm0r 6546 nnacl 6547 nnacom 6551 nnaass 6552 nndi 6553 nnmass 6554 nnmsucr 6555 nnmcom 6556 brecop 6693 ecopovtrn 6700 ecopovtrng 6703 elpm2r 6734 map0g 6756 fundmen 6874 mapxpen 6918 phpm 6935 f1vrnfibi 7020 elfir 7048 mulcmpblnq 7452 ordpipqqs 7458 mulcmpblnq0 7528 genpprecll 7598 genppreclu 7599 addcmpblnr 7823 ax1rid 7961 axpre-mulgt0 7971 cnegexlem1 8218 msqge0 8660 mulge0 8663 ltleap 8676 nnmulcl 9028 nnsub 9046 elnn0z 9356 ztri3or0 9385 nneoor 9445 uz11 9641 xltnegi 9927 frec2uzuzd 10511 seq3fveq2 10584 seqfveq2g 10586 seq3shft2 10590 seqshft2g 10591 seq3split 10597 seqsplitg 10598 seq3caopr3 10600 seqcaopr3g 10601 seqf1oglem2a 10627 seq3id2 10635 seq3homo 10636 seqhomog 10639 m1expcl2 10670 expadd 10690 expmul 10693 faclbnd 10850 hashfzp1 10933 hashfacen 10945 seq3coll 10951 wrdsymb0 10984 len0nnbi 10986 caucvgrelemcau 11162 recan 11291 rexanre 11402 fsumiun 11659 efexp 11864 dvdstr 12010 alzdvds 12036 zob 12073 bitsinv1 12144 gcdmultiplez 12213 dvdssq 12223 cncongr2 12297 prmdiveq 12429 pythagtriplem2 12460 pcexp 12503 elrestr 12949 ptex 12966 xpsff1o 13051 dfgrp3me 13302 mulgneg2 13362 mulgnnass 13363 mhmmulg 13369 rngpropd 13587 ringadd2 13659 mulgass2 13690 opprrngbg 13710 opprsubrngg 13843 subrngpropd 13848 subrgpropd 13885 rhmpropd 13886 lmodprop2d 13980 cnfldmulg 14208 cnfldexp 14209 restopn2 14503 txcn 14595 txlm 14599 isxms2 14772 rpcxpmul2 15233 gausslemma2dlem0i 15382 bj-om 15667 bj-inf2vnlem2 15701 bj-inf2vn 15704 bj-inf2vn2 15705 |
| Copyright terms: Public domain | W3C validator |