| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
| 4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 698 limelon 4434 eldifpw 4512 ssonuni 4524 onsucuni2 4600 peano2 4631 limom 4650 elrnmpt1 4917 cnveqb 5125 cnveq0 5126 relcoi1 5201 ndmfvg 5589 ffvresb 5725 caovord3d 6094 poxp 6290 nnm0r 6537 nnacl 6538 nnacom 6542 nnaass 6543 nndi 6544 nnmass 6545 nnmsucr 6546 nnmcom 6547 brecop 6684 ecopovtrn 6691 ecopovtrng 6694 elpm2r 6725 map0g 6747 fundmen 6865 mapxpen 6909 phpm 6926 f1vrnfibi 7011 elfir 7039 mulcmpblnq 7435 ordpipqqs 7441 mulcmpblnq0 7511 genpprecll 7581 genppreclu 7582 addcmpblnr 7806 ax1rid 7944 axpre-mulgt0 7954 cnegexlem1 8201 msqge0 8643 mulge0 8646 ltleap 8659 nnmulcl 9011 nnsub 9029 elnn0z 9339 ztri3or0 9368 nneoor 9428 uz11 9624 xltnegi 9910 frec2uzuzd 10494 seq3fveq2 10567 seqfveq2g 10569 seq3shft2 10573 seqshft2g 10574 seq3split 10580 seqsplitg 10581 seq3caopr3 10583 seqcaopr3g 10584 seqf1oglem2a 10610 seq3id2 10618 seq3homo 10619 seqhomog 10622 m1expcl2 10653 expadd 10673 expmul 10676 faclbnd 10833 hashfzp1 10916 hashfacen 10928 seq3coll 10934 wrdsymb0 10967 len0nnbi 10969 caucvgrelemcau 11145 recan 11274 rexanre 11385 fsumiun 11642 efexp 11847 dvdstr 11993 alzdvds 12019 zob 12056 gcdmultiplez 12188 dvdssq 12198 cncongr2 12272 prmdiveq 12404 pythagtriplem2 12435 pcexp 12478 elrestr 12918 ptex 12935 xpsff1o 12992 dfgrp3me 13232 mulgneg2 13286 mulgnnass 13287 mhmmulg 13293 rngpropd 13511 ringadd2 13583 mulgass2 13614 opprrngbg 13634 opprsubrngg 13767 subrngpropd 13772 subrgpropd 13809 rhmpropd 13810 lmodprop2d 13904 cnfldmulg 14132 cnfldexp 14133 restopn2 14419 txcn 14511 txlm 14515 isxms2 14688 rpcxpmul2 15149 gausslemma2dlem0i 15298 bj-om 15583 bj-inf2vnlem2 15617 bj-inf2vn 15620 bj-inf2vn2 15621 |
| Copyright terms: Public domain | W3C validator |