![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 697 limelon 4401 eldifpw 4479 ssonuni 4489 onsucuni2 4565 peano2 4596 limom 4615 elrnmpt1 4880 cnveqb 5086 cnveq0 5087 relcoi1 5162 ndmfvg 5548 ffvresb 5681 caovord3d 6047 poxp 6235 nnm0r 6482 nnacl 6483 nnacom 6487 nnaass 6488 nndi 6489 nnmass 6490 nnmsucr 6491 nnmcom 6492 brecop 6627 ecopovtrn 6634 ecopovtrng 6637 elpm2r 6668 map0g 6690 fundmen 6808 mapxpen 6850 phpm 6867 f1vrnfibi 6946 elfir 6974 mulcmpblnq 7369 ordpipqqs 7375 mulcmpblnq0 7445 genpprecll 7515 genppreclu 7516 addcmpblnr 7740 ax1rid 7878 axpre-mulgt0 7888 cnegexlem1 8134 msqge0 8575 mulge0 8578 ltleap 8591 nnmulcl 8942 nnsub 8960 elnn0z 9268 ztri3or0 9297 nneoor 9357 uz11 9552 xltnegi 9837 frec2uzuzd 10404 seq3fveq2 10471 seq3shft2 10475 seq3split 10481 seq3caopr3 10483 seq3id2 10511 seq3homo 10512 m1expcl2 10544 expadd 10564 expmul 10567 faclbnd 10723 hashfzp1 10806 hashfacen 10818 seq3coll 10824 caucvgrelemcau 10991 recan 11120 rexanre 11231 fsumiun 11487 efexp 11692 dvdstr 11837 alzdvds 11862 zob 11898 gcdmultiplez 12024 dvdssq 12034 cncongr2 12106 prmdiveq 12238 pythagtriplem2 12268 pcexp 12311 elrestr 12701 ptex 12718 xpsff1o 12773 dfgrp3me 12975 mulgneg2 13022 mulgnnass 13023 mhmmulg 13029 ringadd2 13215 mulgass2 13240 subrgpropd 13374 lmodprop2d 13443 cnfldmulg 13555 cnfldexp 13556 restopn2 13768 txcn 13860 txlm 13864 isxms2 14037 bj-om 14774 bj-inf2vnlem2 14808 bj-inf2vn 14811 bj-inf2vn2 14812 |
Copyright terms: Public domain | W3C validator |