![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 698 limelon 4430 eldifpw 4508 ssonuni 4520 onsucuni2 4596 peano2 4627 limom 4646 elrnmpt1 4913 cnveqb 5121 cnveq0 5122 relcoi1 5197 ndmfvg 5585 ffvresb 5721 caovord3d 6089 poxp 6285 nnm0r 6532 nnacl 6533 nnacom 6537 nnaass 6538 nndi 6539 nnmass 6540 nnmsucr 6541 nnmcom 6542 brecop 6679 ecopovtrn 6686 ecopovtrng 6689 elpm2r 6720 map0g 6742 fundmen 6860 mapxpen 6904 phpm 6921 f1vrnfibi 7004 elfir 7032 mulcmpblnq 7428 ordpipqqs 7434 mulcmpblnq0 7504 genpprecll 7574 genppreclu 7575 addcmpblnr 7799 ax1rid 7937 axpre-mulgt0 7947 cnegexlem1 8194 msqge0 8635 mulge0 8638 ltleap 8651 nnmulcl 9003 nnsub 9021 elnn0z 9330 ztri3or0 9359 nneoor 9419 uz11 9615 xltnegi 9901 frec2uzuzd 10473 seq3fveq2 10546 seqfveq2g 10548 seq3shft2 10552 seqshft2g 10553 seq3split 10559 seqsplitg 10560 seq3caopr3 10562 seqcaopr3g 10563 seqf1oglem2a 10589 seq3id2 10597 seq3homo 10598 seqhomog 10601 m1expcl2 10632 expadd 10652 expmul 10655 faclbnd 10812 hashfzp1 10895 hashfacen 10907 seq3coll 10913 wrdsymb0 10946 len0nnbi 10948 caucvgrelemcau 11124 recan 11253 rexanre 11364 fsumiun 11620 efexp 11825 dvdstr 11971 alzdvds 11996 zob 12032 gcdmultiplez 12158 dvdssq 12168 cncongr2 12242 prmdiveq 12374 pythagtriplem2 12404 pcexp 12447 elrestr 12858 ptex 12875 xpsff1o 12932 dfgrp3me 13172 mulgneg2 13226 mulgnnass 13227 mhmmulg 13233 rngpropd 13451 ringadd2 13523 mulgass2 13554 opprrngbg 13574 opprsubrngg 13707 subrngpropd 13712 subrgpropd 13749 rhmpropd 13750 lmodprop2d 13844 cnfldmulg 14064 cnfldexp 14065 restopn2 14351 txcn 14443 txlm 14447 isxms2 14620 gausslemma2dlem0i 15173 bj-om 15429 bj-inf2vnlem2 15463 bj-inf2vn 15466 bj-inf2vn2 15467 |
Copyright terms: Public domain | W3C validator |