![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 698 limelon 4431 eldifpw 4509 ssonuni 4521 onsucuni2 4597 peano2 4628 limom 4647 elrnmpt1 4914 cnveqb 5122 cnveq0 5123 relcoi1 5198 ndmfvg 5586 ffvresb 5722 caovord3d 6091 poxp 6287 nnm0r 6534 nnacl 6535 nnacom 6539 nnaass 6540 nndi 6541 nnmass 6542 nnmsucr 6543 nnmcom 6544 brecop 6681 ecopovtrn 6688 ecopovtrng 6691 elpm2r 6722 map0g 6744 fundmen 6862 mapxpen 6906 phpm 6923 f1vrnfibi 7006 elfir 7034 mulcmpblnq 7430 ordpipqqs 7436 mulcmpblnq0 7506 genpprecll 7576 genppreclu 7577 addcmpblnr 7801 ax1rid 7939 axpre-mulgt0 7949 cnegexlem1 8196 msqge0 8637 mulge0 8640 ltleap 8653 nnmulcl 9005 nnsub 9023 elnn0z 9333 ztri3or0 9362 nneoor 9422 uz11 9618 xltnegi 9904 frec2uzuzd 10476 seq3fveq2 10549 seqfveq2g 10551 seq3shft2 10555 seqshft2g 10556 seq3split 10562 seqsplitg 10563 seq3caopr3 10565 seqcaopr3g 10566 seqf1oglem2a 10592 seq3id2 10600 seq3homo 10601 seqhomog 10604 m1expcl2 10635 expadd 10655 expmul 10658 faclbnd 10815 hashfzp1 10898 hashfacen 10910 seq3coll 10916 wrdsymb0 10949 len0nnbi 10951 caucvgrelemcau 11127 recan 11256 rexanre 11367 fsumiun 11623 efexp 11828 dvdstr 11974 alzdvds 11999 zob 12035 gcdmultiplez 12161 dvdssq 12171 cncongr2 12245 prmdiveq 12377 pythagtriplem2 12407 pcexp 12450 elrestr 12861 ptex 12878 xpsff1o 12935 dfgrp3me 13175 mulgneg2 13229 mulgnnass 13230 mhmmulg 13236 rngpropd 13454 ringadd2 13526 mulgass2 13557 opprrngbg 13577 opprsubrngg 13710 subrngpropd 13715 subrgpropd 13752 rhmpropd 13753 lmodprop2d 13847 cnfldmulg 14075 cnfldexp 14076 restopn2 14362 txcn 14454 txlm 14458 isxms2 14631 gausslemma2dlem0i 15214 bj-om 15499 bj-inf2vnlem2 15533 bj-inf2vn 15536 bj-inf2vn2 15537 |
Copyright terms: Public domain | W3C validator |