| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
| 4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 699 limelon 4451 eldifpw 4529 ssonuni 4541 onsucuni2 4617 peano2 4648 limom 4667 elrnmpt1 4935 cnveqb 5144 cnveq0 5145 relcoi1 5220 ndmfvg 5617 ffvresb 5753 caovord3d 6127 poxp 6328 nnm0r 6575 nnacl 6576 nnacom 6580 nnaass 6581 nndi 6582 nnmass 6583 nnmsucr 6584 nnmcom 6585 brecop 6722 ecopovtrn 6729 ecopovtrng 6732 elpm2r 6763 map0g 6785 fundmen 6909 mapxpen 6957 phpm 6974 f1vrnfibi 7059 elfir 7087 mulcmpblnq 7494 ordpipqqs 7500 mulcmpblnq0 7570 genpprecll 7640 genppreclu 7641 addcmpblnr 7865 ax1rid 8003 axpre-mulgt0 8013 cnegexlem1 8260 msqge0 8702 mulge0 8705 ltleap 8718 nnmulcl 9070 nnsub 9088 elnn0z 9398 ztri3or0 9427 nneoor 9488 uz11 9684 xltnegi 9970 frec2uzuzd 10560 seq3fveq2 10633 seqfveq2g 10635 seq3shft2 10639 seqshft2g 10640 seq3split 10646 seqsplitg 10647 seq3caopr3 10649 seqcaopr3g 10650 seqf1oglem2a 10676 seq3id2 10684 seq3homo 10685 seqhomog 10688 m1expcl2 10719 expadd 10739 expmul 10742 faclbnd 10899 hashfzp1 10982 hashfacen 10994 seq3coll 11000 wrdsymb0 11039 len0nnbi 11041 caucvgrelemcau 11341 recan 11470 rexanre 11581 fsumiun 11838 efexp 12043 dvdstr 12189 alzdvds 12215 zob 12252 bitsinv1 12323 gcdmultiplez 12392 dvdssq 12402 cncongr2 12476 prmdiveq 12608 pythagtriplem2 12639 pcexp 12682 elrestr 13129 ptex 13146 xpsff1o 13231 dfgrp3me 13482 mulgneg2 13542 mulgnnass 13543 mhmmulg 13549 rngpropd 13767 ringadd2 13839 mulgass2 13870 opprrngbg 13890 opprsubrngg 14023 subrngpropd 14028 subrgpropd 14065 rhmpropd 14066 lmodprop2d 14160 cnfldmulg 14388 cnfldexp 14389 restopn2 14705 txcn 14797 txlm 14801 isxms2 14974 rpcxpmul2 15435 gausslemma2dlem0i 15584 incistruhgr 15736 bj-om 15987 bj-inf2vnlem2 16021 bj-inf2vn 16024 bj-inf2vn2 16025 dom1o 16043 |
| Copyright terms: Public domain | W3C validator |