| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
| 4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 698 limelon 4435 eldifpw 4513 ssonuni 4525 onsucuni2 4601 peano2 4632 limom 4651 elrnmpt1 4918 cnveqb 5126 cnveq0 5127 relcoi1 5202 ndmfvg 5592 ffvresb 5728 caovord3d 6098 poxp 6299 nnm0r 6546 nnacl 6547 nnacom 6551 nnaass 6552 nndi 6553 nnmass 6554 nnmsucr 6555 nnmcom 6556 brecop 6693 ecopovtrn 6700 ecopovtrng 6703 elpm2r 6734 map0g 6756 fundmen 6874 mapxpen 6918 phpm 6935 f1vrnfibi 7020 elfir 7048 mulcmpblnq 7454 ordpipqqs 7460 mulcmpblnq0 7530 genpprecll 7600 genppreclu 7601 addcmpblnr 7825 ax1rid 7963 axpre-mulgt0 7973 cnegexlem1 8220 msqge0 8662 mulge0 8665 ltleap 8678 nnmulcl 9030 nnsub 9048 elnn0z 9358 ztri3or0 9387 nneoor 9447 uz11 9643 xltnegi 9929 frec2uzuzd 10513 seq3fveq2 10586 seqfveq2g 10588 seq3shft2 10592 seqshft2g 10593 seq3split 10599 seqsplitg 10600 seq3caopr3 10602 seqcaopr3g 10603 seqf1oglem2a 10629 seq3id2 10637 seq3homo 10638 seqhomog 10641 m1expcl2 10672 expadd 10692 expmul 10695 faclbnd 10852 hashfzp1 10935 hashfacen 10947 seq3coll 10953 wrdsymb0 10986 len0nnbi 10988 caucvgrelemcau 11164 recan 11293 rexanre 11404 fsumiun 11661 efexp 11866 dvdstr 12012 alzdvds 12038 zob 12075 bitsinv1 12146 gcdmultiplez 12215 dvdssq 12225 cncongr2 12299 prmdiveq 12431 pythagtriplem2 12462 pcexp 12505 elrestr 12951 ptex 12968 xpsff1o 13053 dfgrp3me 13304 mulgneg2 13364 mulgnnass 13365 mhmmulg 13371 rngpropd 13589 ringadd2 13661 mulgass2 13692 opprrngbg 13712 opprsubrngg 13845 subrngpropd 13850 subrgpropd 13887 rhmpropd 13888 lmodprop2d 13982 cnfldmulg 14210 cnfldexp 14211 restopn2 14527 txcn 14619 txlm 14623 isxms2 14796 rpcxpmul2 15257 gausslemma2dlem0i 15406 bj-om 15691 bj-inf2vnlem2 15725 bj-inf2vn 15728 bj-inf2vn2 15729 |
| Copyright terms: Public domain | W3C validator |