![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 697 limelon 4401 eldifpw 4479 ssonuni 4489 onsucuni2 4565 peano2 4596 limom 4615 elrnmpt1 4880 cnveqb 5086 cnveq0 5087 relcoi1 5162 ndmfvg 5548 ffvresb 5682 caovord3d 6048 poxp 6236 nnm0r 6483 nnacl 6484 nnacom 6488 nnaass 6489 nndi 6490 nnmass 6491 nnmsucr 6492 nnmcom 6493 brecop 6628 ecopovtrn 6635 ecopovtrng 6638 elpm2r 6669 map0g 6691 fundmen 6809 mapxpen 6851 phpm 6868 f1vrnfibi 6947 elfir 6975 mulcmpblnq 7370 ordpipqqs 7376 mulcmpblnq0 7446 genpprecll 7516 genppreclu 7517 addcmpblnr 7741 ax1rid 7879 axpre-mulgt0 7889 cnegexlem1 8135 msqge0 8576 mulge0 8579 ltleap 8592 nnmulcl 8943 nnsub 8961 elnn0z 9269 ztri3or0 9298 nneoor 9358 uz11 9553 xltnegi 9838 frec2uzuzd 10405 seq3fveq2 10472 seq3shft2 10476 seq3split 10482 seq3caopr3 10484 seq3id2 10512 seq3homo 10513 m1expcl2 10545 expadd 10565 expmul 10568 faclbnd 10724 hashfzp1 10807 hashfacen 10819 seq3coll 10825 caucvgrelemcau 10992 recan 11121 rexanre 11232 fsumiun 11488 efexp 11693 dvdstr 11838 alzdvds 11863 zob 11899 gcdmultiplez 12025 dvdssq 12035 cncongr2 12107 prmdiveq 12239 pythagtriplem2 12269 pcexp 12312 elrestr 12702 ptex 12719 xpsff1o 12775 dfgrp3me 12977 mulgneg2 13027 mulgnnass 13028 mhmmulg 13034 ringadd2 13221 mulgass2 13246 subrgpropd 13380 lmodprop2d 13449 cnfldmulg 13617 cnfldexp 13618 restopn2 13844 txcn 13936 txlm 13940 isxms2 14113 bj-om 14850 bj-inf2vnlem2 14884 bj-inf2vn 14887 bj-inf2vn2 14888 |
Copyright terms: Public domain | W3C validator |