| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrrid | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | bicomd 141 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
| 4 | 1, 3 | imbitrid 154 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 698 limelon 4435 eldifpw 4513 ssonuni 4525 onsucuni2 4601 peano2 4632 limom 4651 elrnmpt1 4918 cnveqb 5126 cnveq0 5127 relcoi1 5202 ndmfvg 5590 ffvresb 5726 caovord3d 6095 poxp 6291 nnm0r 6538 nnacl 6539 nnacom 6543 nnaass 6544 nndi 6545 nnmass 6546 nnmsucr 6547 nnmcom 6548 brecop 6685 ecopovtrn 6692 ecopovtrng 6695 elpm2r 6726 map0g 6748 fundmen 6866 mapxpen 6910 phpm 6927 f1vrnfibi 7012 elfir 7040 mulcmpblnq 7437 ordpipqqs 7443 mulcmpblnq0 7513 genpprecll 7583 genppreclu 7584 addcmpblnr 7808 ax1rid 7946 axpre-mulgt0 7956 cnegexlem1 8203 msqge0 8645 mulge0 8648 ltleap 8661 nnmulcl 9013 nnsub 9031 elnn0z 9341 ztri3or0 9370 nneoor 9430 uz11 9626 xltnegi 9912 frec2uzuzd 10496 seq3fveq2 10569 seqfveq2g 10571 seq3shft2 10575 seqshft2g 10576 seq3split 10582 seqsplitg 10583 seq3caopr3 10585 seqcaopr3g 10586 seqf1oglem2a 10612 seq3id2 10620 seq3homo 10621 seqhomog 10624 m1expcl2 10655 expadd 10675 expmul 10678 faclbnd 10835 hashfzp1 10918 hashfacen 10930 seq3coll 10936 wrdsymb0 10969 len0nnbi 10971 caucvgrelemcau 11147 recan 11276 rexanre 11387 fsumiun 11644 efexp 11849 dvdstr 11995 alzdvds 12021 zob 12058 bitsinv1 12129 gcdmultiplez 12198 dvdssq 12208 cncongr2 12282 prmdiveq 12414 pythagtriplem2 12445 pcexp 12488 elrestr 12928 ptex 12945 xpsff1o 13002 dfgrp3me 13242 mulgneg2 13296 mulgnnass 13297 mhmmulg 13303 rngpropd 13521 ringadd2 13593 mulgass2 13624 opprrngbg 13644 opprsubrngg 13777 subrngpropd 13782 subrgpropd 13819 rhmpropd 13820 lmodprop2d 13914 cnfldmulg 14142 cnfldexp 14143 restopn2 14429 txcn 14521 txlm 14525 isxms2 14698 rpcxpmul2 15159 gausslemma2dlem0i 15308 bj-om 15593 bj-inf2vnlem2 15627 bj-inf2vn 15630 bj-inf2vn2 15631 |
| Copyright terms: Public domain | W3C validator |