| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifpdfbidc | GIF version | ||
| Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020.) (Proof shortened by Wolf Lammen, 30-Apr-2024.) |
| Ref | Expression |
|---|---|
| ifpdfbidc | ⊢ (DECID 𝜑 → ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34bdc 876 | . . 3 ⊢ (DECID 𝜑 → ((𝜓 → 𝜑) ↔ (¬ 𝜑 → ¬ 𝜓))) | |
| 2 | 1 | anbi2d 464 | . 2 ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓)))) |
| 3 | dfbi2 388 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 4 | 3 | a1i 9 | . 2 ⊢ (DECID 𝜑 → ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))) |
| 5 | dfifp2dc 987 | . 2 ⊢ (DECID 𝜑 → (if-(𝜑, 𝜓, ¬ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓)))) | |
| 6 | 2, 4, 5 | 3bitr4d 220 | 1 ⊢ (DECID 𝜑 → ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 if-wif 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-ifp 984 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |