ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpdfbidc GIF version

Theorem ifpdfbidc 991
Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020.) (Proof shortened by Wolf Lammen, 30-Apr-2024.)
Assertion
Ref Expression
ifpdfbidc (DECID 𝜑 → ((𝜑𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)))

Proof of Theorem ifpdfbidc
StepHypRef Expression
1 con34bdc 876 . . 3 (DECID 𝜑 → ((𝜓𝜑) ↔ (¬ 𝜑 → ¬ 𝜓)))
21anbi2d 464 . 2 (DECID 𝜑 → (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))))
3 dfbi2 388 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
43a1i 9 . 2 (DECID 𝜑 → ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑))))
5 dfifp2dc 987 . 2 (DECID 𝜑 → (if-(𝜑, 𝜓, ¬ 𝜓) ↔ ((𝜑𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))))
62, 4, 53bitr4d 220 1 (DECID 𝜑 → ((𝜑𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator