ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bamalip GIF version

Theorem bamalip 2135
Description: "Bamalip", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜑 exist, therefore some 𝜒 is 𝜑. (In Aristotelian notation, AAI-4: PaM and MaS therefore SiP.) Like barbari 2116. (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
bamalip.maj 𝑥(𝜑𝜓)
bamalip.min 𝑥(𝜓𝜒)
bamalip.e 𝑥𝜑
Assertion
Ref Expression
bamalip 𝑥(𝜒𝜑)

Proof of Theorem bamalip
StepHypRef Expression
1 bamalip.e . 2 𝑥𝜑
2 bamalip.maj . . . . 5 𝑥(𝜑𝜓)
32spi 1524 . . . 4 (𝜑𝜓)
4 bamalip.min . . . . 5 𝑥(𝜓𝜒)
54spi 1524 . . . 4 (𝜓𝜒)
63, 5syl 14 . . 3 (𝜑𝜒)
76ancri 322 . 2 (𝜑 → (𝜒𝜑))
81, 7eximii 1590 1 𝑥(𝜒𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator