Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancri | GIF version |
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jca 304 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: bamalip 2135 gencbvex 2772 mosubt 2903 trsuc 4400 eusv2nf 4434 mosubopt 4669 issref 4986 fo00 5468 eqfnov2 5949 hashfzp1 10737 dfgcd2 11947 |
Copyright terms: Public domain | W3C validator |