Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdcel GIF version

Theorem bj-bdcel 15847
Description: Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.)
Hypothesis
Ref Expression
bj-bdcel.bd BOUNDED 𝑦 = 𝐴
Assertion
Ref Expression
bj-bdcel BOUNDED 𝐴𝑥
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem bj-bdcel
StepHypRef Expression
1 bj-bdcel.bd . . 3 BOUNDED 𝑦 = 𝐴
21ax-bdex 15829 . 2 BOUNDED𝑦𝑥 𝑦 = 𝐴
3 risset 2535 . 2 (𝐴𝑥 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
42, 3bd0r 15835 1 BOUNDED 𝐴𝑥
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  wrex 2486  BOUNDED wbd 15822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558  ax-bd0 15823  ax-bdex 15829
This theorem depends on definitions:  df-bi 117  df-clel 2202  df-rex 2491
This theorem is referenced by:  bj-bd0el  15878  bj-bdsucel  15892
  Copyright terms: Public domain W3C validator