Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdcel | GIF version |
Description: Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.) |
Ref | Expression |
---|---|
bj-bdcel.bd | ⊢ BOUNDED 𝑦 = 𝐴 |
Ref | Expression |
---|---|
bj-bdcel | ⊢ BOUNDED 𝐴 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdcel.bd | . . 3 ⊢ BOUNDED 𝑦 = 𝐴 | |
2 | 1 | ax-bdex 13661 | . 2 ⊢ BOUNDED ∃𝑦 ∈ 𝑥 𝑦 = 𝐴 |
3 | risset 2493 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 𝑦 = 𝐴) | |
4 | 2, 3 | bd0r 13667 | 1 ⊢ BOUNDED 𝐴 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∃wrex 2444 BOUNDED wbd 13654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-bd0 13655 ax-bdex 13661 |
This theorem depends on definitions: df-bi 116 df-clel 2161 df-rex 2449 |
This theorem is referenced by: bj-bd0el 13710 bj-bdsucel 13724 |
Copyright terms: Public domain | W3C validator |