![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdcel | GIF version |
Description: Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.) |
Ref | Expression |
---|---|
bj-bdcel.bd | ⊢ BOUNDED 𝑦 = 𝐴 |
Ref | Expression |
---|---|
bj-bdcel | ⊢ BOUNDED 𝐴 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdcel.bd | . . 3 ⊢ BOUNDED 𝑦 = 𝐴 | |
2 | 1 | ax-bdex 15029 | . 2 ⊢ BOUNDED ∃𝑦 ∈ 𝑥 𝑦 = 𝐴 |
3 | risset 2518 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 𝑦 = 𝐴) | |
4 | 2, 3 | bd0r 15035 | 1 ⊢ BOUNDED 𝐴 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 ∃wrex 2469 BOUNDED wbd 15022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 ax-bd0 15023 ax-bdex 15029 |
This theorem depends on definitions: df-bi 117 df-clel 2185 df-rex 2474 |
This theorem is referenced by: bj-bd0el 15078 bj-bdsucel 15092 |
Copyright terms: Public domain | W3C validator |