Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdcel GIF version

Theorem bj-bdcel 11085
 Description: Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.)
Hypothesis
Ref Expression
bj-bdcel.bd BOUNDED 𝑦 = 𝐴
Assertion
Ref Expression
bj-bdcel BOUNDED 𝐴𝑥
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem bj-bdcel
StepHypRef Expression
1 bj-bdcel.bd . . 3 BOUNDED 𝑦 = 𝐴
21ax-bdex 11067 . 2 BOUNDED𝑦𝑥 𝑦 = 𝐴
3 risset 2402 . 2 (𝐴𝑥 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
42, 3bd0r 11073 1 BOUNDED 𝐴𝑥
 Colors of variables: wff set class Syntax hints:   = wceq 1287   ∈ wcel 1436  ∃wrex 2356  BOUNDED wbd 11060 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-4 1443  ax-ial 1470  ax-bd0 11061  ax-bdex 11067 This theorem depends on definitions:  df-bi 115  df-clel 2081  df-rex 2361 This theorem is referenced by:  bj-bd0el  11116  bj-bdsucel  11130
 Copyright terms: Public domain W3C validator