Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdcel | GIF version |
Description: Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.) |
Ref | Expression |
---|---|
bj-bdcel.bd | ⊢ BOUNDED 𝑦 = 𝐴 |
Ref | Expression |
---|---|
bj-bdcel | ⊢ BOUNDED 𝐴 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdcel.bd | . . 3 ⊢ BOUNDED 𝑦 = 𝐴 | |
2 | 1 | ax-bdex 13465 | . 2 ⊢ BOUNDED ∃𝑦 ∈ 𝑥 𝑦 = 𝐴 |
3 | risset 2485 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 𝑦 = 𝐴) | |
4 | 2, 3 | bd0r 13471 | 1 ⊢ BOUNDED 𝐴 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 ∃wrex 2436 BOUNDED wbd 13458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 ax-bd0 13459 ax-bdex 13465 |
This theorem depends on definitions: df-bi 116 df-clel 2153 df-rex 2441 |
This theorem is referenced by: bj-bd0el 13514 bj-bdsucel 13528 |
Copyright terms: Public domain | W3C validator |