| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdcel | GIF version | ||
| Description: Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| bj-bdcel.bd | ⊢ BOUNDED 𝑦 = 𝐴 |
| Ref | Expression |
|---|---|
| bj-bdcel | ⊢ BOUNDED 𝐴 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bdcel.bd | . . 3 ⊢ BOUNDED 𝑦 = 𝐴 | |
| 2 | 1 | ax-bdex 15475 | . 2 ⊢ BOUNDED ∃𝑦 ∈ 𝑥 𝑦 = 𝐴 |
| 3 | risset 2525 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 𝑦 = 𝐴) | |
| 4 | 2, 3 | bd0r 15481 | 1 ⊢ BOUNDED 𝐴 ∈ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∃wrex 2476 BOUNDED wbd 15468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-bd0 15469 ax-bdex 15475 |
| This theorem depends on definitions: df-bi 117 df-clel 2192 df-rex 2481 |
| This theorem is referenced by: bj-bd0el 15524 bj-bdsucel 15538 |
| Copyright terms: Public domain | W3C validator |