| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdcel | GIF version | ||
| Description: Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| bj-bdcel.bd | ⊢ BOUNDED 𝑦 = 𝐴 |
| Ref | Expression |
|---|---|
| bj-bdcel | ⊢ BOUNDED 𝐴 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bdcel.bd | . . 3 ⊢ BOUNDED 𝑦 = 𝐴 | |
| 2 | 1 | ax-bdex 15829 | . 2 ⊢ BOUNDED ∃𝑦 ∈ 𝑥 𝑦 = 𝐴 |
| 3 | risset 2535 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 𝑦 = 𝐴) | |
| 4 | 2, 3 | bd0r 15835 | 1 ⊢ BOUNDED 𝐴 ∈ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ∃wrex 2486 BOUNDED wbd 15822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 ax-bd0 15823 ax-bdex 15829 |
| This theorem depends on definitions: df-bi 117 df-clel 2202 df-rex 2491 |
| This theorem is referenced by: bj-bd0el 15878 bj-bdsucel 15892 |
| Copyright terms: Public domain | W3C validator |