Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab GIF version

Theorem bdcab 15603
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdcab BOUNDED {𝑥𝜑}

Proof of Theorem bdcab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED 𝜑
21bdab 15592 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
32bdelir 15601 1 BOUNDED {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2182  BOUNDED wbd 15566  BOUNDED wbdc 15594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-bd0 15567  ax-bdsb 15576
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-bdc 15595
This theorem is referenced by:  bds  15605  bdcrab  15606  bdccsb  15614  bdcdif  15615  bdcun  15616  bdcin  15617  bdcpw  15623  bdcsn  15624  bdcuni  15630  bdcint  15631  bdciun  15632  bdciin  15633  bdcriota  15637  bj-bdfindis  15701
  Copyright terms: Public domain W3C validator