Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab GIF version

Theorem bdcab 15411
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdcab BOUNDED {𝑥𝜑}

Proof of Theorem bdcab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED 𝜑
21bdab 15400 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
32bdelir 15409 1 BOUNDED {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2179  BOUNDED wbd 15374  BOUNDED wbdc 15402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-bd0 15375  ax-bdsb 15384
This theorem depends on definitions:  df-bi 117  df-clab 2180  df-bdc 15403
This theorem is referenced by:  bds  15413  bdcrab  15414  bdccsb  15422  bdcdif  15423  bdcun  15424  bdcin  15425  bdcpw  15431  bdcsn  15432  bdcuni  15438  bdcint  15439  bdciun  15440  bdciin  15441  bdcriota  15445  bj-bdfindis  15509
  Copyright terms: Public domain W3C validator