Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab GIF version

Theorem bdcab 15495
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdcab BOUNDED {𝑥𝜑}

Proof of Theorem bdcab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED 𝜑
21bdab 15484 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
32bdelir 15493 1 BOUNDED {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2182  BOUNDED wbd 15458  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-bd0 15459  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-bdc 15487
This theorem is referenced by:  bds  15497  bdcrab  15498  bdccsb  15506  bdcdif  15507  bdcun  15508  bdcin  15509  bdcpw  15515  bdcsn  15516  bdcuni  15522  bdcint  15523  bdciun  15524  bdciin  15525  bdcriota  15529  bj-bdfindis  15593
  Copyright terms: Public domain W3C validator