Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab GIF version

Theorem bdcab 15984
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdcab BOUNDED {𝑥𝜑}

Proof of Theorem bdcab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED 𝜑
21bdab 15973 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
32bdelir 15982 1 BOUNDED {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2193  BOUNDED wbd 15947  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-bd0 15948  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-clab 2194  df-bdc 15976
This theorem is referenced by:  bds  15986  bdcrab  15987  bdccsb  15995  bdcdif  15996  bdcun  15997  bdcin  15998  bdcpw  16004  bdcsn  16005  bdcuni  16011  bdcint  16012  bdciun  16013  bdciin  16014  bdcriota  16018  bj-bdfindis  16082
  Copyright terms: Public domain W3C validator