Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab GIF version

Theorem bdcab 15718
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdcab BOUNDED {𝑥𝜑}

Proof of Theorem bdcab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED 𝜑
21bdab 15707 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
32bdelir 15716 1 BOUNDED {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2190  BOUNDED wbd 15681  BOUNDED wbdc 15709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1471  ax-bd0 15682  ax-bdsb 15691
This theorem depends on definitions:  df-bi 117  df-clab 2191  df-bdc 15710
This theorem is referenced by:  bds  15720  bdcrab  15721  bdccsb  15729  bdcdif  15730  bdcun  15731  bdcin  15732  bdcpw  15738  bdcsn  15739  bdcuni  15745  bdcint  15746  bdciun  15747  bdciin  15748  bdcriota  15752  bj-bdfindis  15816
  Copyright terms: Public domain W3C validator