Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab GIF version

Theorem bdcab 16170
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdcab BOUNDED {𝑥𝜑}

Proof of Theorem bdcab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED 𝜑
21bdab 16159 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
32bdelir 16168 1 BOUNDED {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2215  BOUNDED wbd 16133  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-bd0 16134  ax-bdsb 16143
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-bdc 16162
This theorem is referenced by:  bds  16172  bdcrab  16173  bdccsb  16181  bdcdif  16182  bdcun  16183  bdcin  16184  bdcpw  16190  bdcsn  16191  bdcuni  16197  bdcint  16198  bdciun  16199  bdciin  16200  bdcriota  16204  bj-bdfindis  16268
  Copyright terms: Public domain W3C validator