Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab GIF version

Theorem bdcab 14571
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdcab BOUNDED {𝑥𝜑}

Proof of Theorem bdcab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED 𝜑
21bdab 14560 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
32bdelir 14569 1 BOUNDED {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2163  BOUNDED wbd 14534  BOUNDED wbdc 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-bd0 14535  ax-bdsb 14544
This theorem depends on definitions:  df-bi 117  df-clab 2164  df-bdc 14563
This theorem is referenced by:  bds  14573  bdcrab  14574  bdccsb  14582  bdcdif  14583  bdcun  14584  bdcin  14585  bdcpw  14591  bdcsn  14592  bdcuni  14598  bdcint  14599  bdciun  14600  bdciin  14601  bdcriota  14605  bj-bdfindis  14669
  Copyright terms: Public domain W3C validator