Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnel GIF version

Theorem bdnel 13736
Description: Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdnel.1 BOUNDED 𝐴
Assertion
Ref Expression
bdnel BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdnel
StepHypRef Expression
1 bdnel.1 . . . 4 BOUNDED 𝐴
21bdeli 13728 . . 3 BOUNDED 𝑥𝐴
32ax-bdn 13699 . 2 BOUNDED ¬ 𝑥𝐴
4 df-nel 2432 . 2 (𝑥𝐴 ↔ ¬ 𝑥𝐴)
53, 4bd0r 13707 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2136  wnel 2431  BOUNDED wbd 13694  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-4 1498  ax-bd0 13695  ax-bdn 13699
This theorem depends on definitions:  df-bi 116  df-nel 2432  df-bdc 13723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator