Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 16167
Description: Inference associated with bdel 16166. Its converse is bdelir 16168. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 16166 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2200  BOUNDED wbd 16133  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1556
This theorem depends on definitions:  df-bi 117  df-bdc 16162
This theorem is referenced by:  bdph  16171  bdcrab  16173  bdnel  16175  bdccsb  16181  bdcdif  16182  bdcun  16183  bdcin  16184  bdss  16185  bdsnss  16194  bdciun  16199  bdciin  16200  bdinex1  16220  bj-uniex2  16237  bj-inf2vnlem3  16293
  Copyright terms: Public domain W3C validator