Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 15576
Description: Inference associated with bdel 15575. Its converse is bdelir 15577. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 15575 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2167  BOUNDED wbd 15542  BOUNDED wbdc 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1524
This theorem depends on definitions:  df-bi 117  df-bdc 15571
This theorem is referenced by:  bdph  15580  bdcrab  15582  bdnel  15584  bdccsb  15590  bdcdif  15591  bdcun  15592  bdcin  15593  bdss  15594  bdsnss  15603  bdciun  15608  bdciin  15609  bdinex1  15629  bj-uniex2  15646  bj-inf2vnlem3  15702
  Copyright terms: Public domain W3C validator