Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 15492
Description: Inference associated with bdel 15491. Its converse is bdelir 15493. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 15491 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2167  BOUNDED wbd 15458  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1524
This theorem depends on definitions:  df-bi 117  df-bdc 15487
This theorem is referenced by:  bdph  15496  bdcrab  15498  bdnel  15500  bdccsb  15506  bdcdif  15507  bdcun  15508  bdcin  15509  bdss  15510  bdsnss  15519  bdciun  15524  bdciin  15525  bdinex1  15545  bj-uniex2  15562  bj-inf2vnlem3  15618
  Copyright terms: Public domain W3C validator