Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 15744
Description: Inference associated with bdel 15743. Its converse is bdelir 15745. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 15743 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2175  BOUNDED wbd 15710  BOUNDED wbdc 15738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1532
This theorem depends on definitions:  df-bi 117  df-bdc 15739
This theorem is referenced by:  bdph  15748  bdcrab  15750  bdnel  15752  bdccsb  15758  bdcdif  15759  bdcun  15760  bdcin  15761  bdss  15762  bdsnss  15771  bdciun  15776  bdciin  15777  bdinex1  15797  bj-uniex2  15814  bj-inf2vnlem3  15870
  Copyright terms: Public domain W3C validator