Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 15600
Description: Inference associated with bdel 15599. Its converse is bdelir 15601. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 15599 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2167  BOUNDED wbd 15566  BOUNDED wbdc 15594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1524
This theorem depends on definitions:  df-bi 117  df-bdc 15595
This theorem is referenced by:  bdph  15604  bdcrab  15606  bdnel  15608  bdccsb  15614  bdcdif  15615  bdcun  15616  bdcin  15617  bdss  15618  bdsnss  15627  bdciun  15632  bdciin  15633  bdinex1  15653  bj-uniex2  15670  bj-inf2vnlem3  15726
  Copyright terms: Public domain W3C validator