Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 13728
Description: Inference associated with bdel 13727. Its converse is bdelir 13729. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 13727 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2136  BOUNDED wbd 13694  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-bdc 13723
This theorem is referenced by:  bdph  13732  bdcrab  13734  bdnel  13736  bdccsb  13742  bdcdif  13743  bdcun  13744  bdcin  13745  bdss  13746  bdsnss  13755  bdciun  13760  bdciin  13761  bdinex1  13781  bj-uniex2  13798  bj-inf2vnlem3  13854
  Copyright terms: Public domain W3C validator