Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 15981
Description: Inference associated with bdel 15980. Its converse is bdelir 15982. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 15980 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2178  BOUNDED wbd 15947  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-bdc 15976
This theorem is referenced by:  bdph  15985  bdcrab  15987  bdnel  15989  bdccsb  15995  bdcdif  15996  bdcun  15997  bdcin  15998  bdss  15999  bdsnss  16008  bdciun  16013  bdciin  16014  bdinex1  16034  bj-uniex2  16051  bj-inf2vnlem3  16107
  Copyright terms: Public domain W3C validator