Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 14637
Description: Inference associated with bdel 14636. Its converse is bdelir 14638. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 14636 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2148  BOUNDED wbd 14603  BOUNDED wbdc 14631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-bdc 14632
This theorem is referenced by:  bdph  14641  bdcrab  14643  bdnel  14645  bdccsb  14651  bdcdif  14652  bdcun  14653  bdcin  14654  bdss  14655  bdsnss  14664  bdciun  14669  bdciin  14670  bdinex1  14690  bj-uniex2  14707  bj-inf2vnlem3  14763
  Copyright terms: Public domain W3C validator