Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli GIF version

Theorem bdeli 15782
Description: Inference associated with bdel 15781. Its converse is bdelir 15783. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED 𝐴
Assertion
Ref Expression
bdeli BOUNDED 𝑥𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED 𝐴
2 bdel 15781 . 2 (BOUNDED 𝐴BOUNDED 𝑥𝐴)
31, 2ax-mp 5 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2176  BOUNDED wbd 15748  BOUNDED wbdc 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1533
This theorem depends on definitions:  df-bi 117  df-bdc 15777
This theorem is referenced by:  bdph  15786  bdcrab  15788  bdnel  15790  bdccsb  15796  bdcdif  15797  bdcun  15798  bdcin  15799  bdss  15800  bdsnss  15809  bdciun  15814  bdciin  15815  bdinex1  15835  bj-uniex2  15852  bj-inf2vnlem3  15908
  Copyright terms: Public domain W3C validator