Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnel Unicode version

Theorem bdnel 13696
Description: Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdnel.1  |- BOUNDED  A
Assertion
Ref Expression
bdnel  |- BOUNDED  x  e/  A
Distinct variable group:    x, A

Proof of Theorem bdnel
StepHypRef Expression
1 bdnel.1 . . . 4  |- BOUNDED  A
21bdeli 13688 . . 3  |- BOUNDED  x  e.  A
32ax-bdn 13659 . 2  |- BOUNDED  -.  x  e.  A
4 df-nel 2431 . 2  |-  ( x  e/  A  <->  -.  x  e.  A )
53, 4bd0r 13667 1  |- BOUNDED  x  e/  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2136    e/ wnel 2430  BOUNDED wbd 13654  BOUNDED wbdc 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-4 1498  ax-bd0 13655  ax-bdn 13659
This theorem depends on definitions:  df-bi 116  df-nel 2431  df-bdc 13683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator