![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdreu | GIF version |
Description: Boundedness of
existential uniqueness.
Remark regarding restricted quantifiers: the formula ∀𝑥 ∈ 𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 14612, and ⊢ (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 14579, if ∀𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then ∀𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdreu.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
bdreu | ⊢ BOUNDED ∃!𝑥 ∈ 𝑦 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdreu.1 | . . . 4 ⊢ BOUNDED 𝜑 | |
2 | 1 | ax-bdex 14574 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝜑 |
3 | ax-bdeq 14575 | . . . . . 6 ⊢ BOUNDED 𝑥 = 𝑧 | |
4 | 1, 3 | ax-bdim 14569 | . . . . 5 ⊢ BOUNDED (𝜑 → 𝑥 = 𝑧) |
5 | 4 | ax-bdal 14573 | . . . 4 ⊢ BOUNDED ∀𝑥 ∈ 𝑦 (𝜑 → 𝑥 = 𝑧) |
6 | 5 | ax-bdex 14574 | . . 3 ⊢ BOUNDED ∃𝑧 ∈ 𝑦 ∀𝑥 ∈ 𝑦 (𝜑 → 𝑥 = 𝑧) |
7 | 2, 6 | ax-bdan 14570 | . 2 ⊢ BOUNDED (∃𝑥 ∈ 𝑦 𝜑 ∧ ∃𝑧 ∈ 𝑦 ∀𝑥 ∈ 𝑦 (𝜑 → 𝑥 = 𝑧)) |
8 | reu3 2928 | . 2 ⊢ (∃!𝑥 ∈ 𝑦 𝜑 ↔ (∃𝑥 ∈ 𝑦 𝜑 ∧ ∃𝑧 ∈ 𝑦 ∀𝑥 ∈ 𝑦 (𝜑 → 𝑥 = 𝑧))) | |
9 | 7, 8 | bd0r 14580 | 1 ⊢ BOUNDED ∃!𝑥 ∈ 𝑦 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wral 2455 ∃wrex 2456 ∃!wreu 2457 BOUNDED wbd 14567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-bd0 14568 ax-bdim 14569 ax-bdan 14570 ax-bdal 14573 ax-bdex 14574 ax-bdeq 14575 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-cleq 2170 df-clel 2173 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 |
This theorem is referenced by: bdrmo 14611 |
Copyright terms: Public domain | W3C validator |