Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdreu GIF version

Theorem bdreu 15990
Description: Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula 𝑥𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 15992, and (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 15959, if 𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then 𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.)

Hypothesis
Ref Expression
bdreu.1 BOUNDED 𝜑
Assertion
Ref Expression
bdreu BOUNDED ∃!𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdreu.1 . . . 4 BOUNDED 𝜑
21ax-bdex 15954 . . 3 BOUNDED𝑥𝑦 𝜑
3 ax-bdeq 15955 . . . . . 6 BOUNDED 𝑥 = 𝑧
41, 3ax-bdim 15949 . . . . 5 BOUNDED (𝜑𝑥 = 𝑧)
54ax-bdal 15953 . . . 4 BOUNDED𝑥𝑦 (𝜑𝑥 = 𝑧)
65ax-bdex 15954 . . 3 BOUNDED𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)
72, 6ax-bdan 15950 . 2 BOUNDED (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧))
8 reu3 2970 . 2 (∃!𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)))
97, 8bd0r 15960 1 BOUNDED ∃!𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wral 2486  wrex 2487  ∃!wreu 2488  BOUNDED wbd 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdim 15949  ax-bdan 15950  ax-bdal 15953  ax-bdex 15954  ax-bdeq 15955
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2200  df-clel 2203  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494
This theorem is referenced by:  bdrmo  15991
  Copyright terms: Public domain W3C validator