Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdreu GIF version

Theorem bdreu 14610
Description: Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula 𝑥𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 14612, and (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 14579, if 𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then 𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.)

Hypothesis
Ref Expression
bdreu.1 BOUNDED 𝜑
Assertion
Ref Expression
bdreu BOUNDED ∃!𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdreu.1 . . . 4 BOUNDED 𝜑
21ax-bdex 14574 . . 3 BOUNDED𝑥𝑦 𝜑
3 ax-bdeq 14575 . . . . . 6 BOUNDED 𝑥 = 𝑧
41, 3ax-bdim 14569 . . . . 5 BOUNDED (𝜑𝑥 = 𝑧)
54ax-bdal 14573 . . . 4 BOUNDED𝑥𝑦 (𝜑𝑥 = 𝑧)
65ax-bdex 14574 . . 3 BOUNDED𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)
72, 6ax-bdan 14570 . 2 BOUNDED (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧))
8 reu3 2928 . 2 (∃!𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)))
97, 8bd0r 14580 1 BOUNDED ∃!𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wral 2455  wrex 2456  ∃!wreu 2457  BOUNDED wbd 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bd0 14568  ax-bdim 14569  ax-bdan 14570  ax-bdal 14573  ax-bdex 14574  ax-bdeq 14575
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-cleq 2170  df-clel 2173  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463
This theorem is referenced by:  bdrmo  14611
  Copyright terms: Public domain W3C validator