Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdreu GIF version

Theorem bdreu 16176
Description: Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula 𝑥𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 16178, and (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 16145, if 𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then 𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.)

Hypothesis
Ref Expression
bdreu.1 BOUNDED 𝜑
Assertion
Ref Expression
bdreu BOUNDED ∃!𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdreu.1 . . . 4 BOUNDED 𝜑
21ax-bdex 16140 . . 3 BOUNDED𝑥𝑦 𝜑
3 ax-bdeq 16141 . . . . . 6 BOUNDED 𝑥 = 𝑧
41, 3ax-bdim 16135 . . . . 5 BOUNDED (𝜑𝑥 = 𝑧)
54ax-bdal 16139 . . . 4 BOUNDED𝑥𝑦 (𝜑𝑥 = 𝑧)
65ax-bdex 16140 . . 3 BOUNDED𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)
72, 6ax-bdan 16136 . 2 BOUNDED (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧))
8 reu3 2993 . 2 (∃!𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)))
97, 8bd0r 16146 1 BOUNDED ∃!𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wral 2508  wrex 2509  ∃!wreu 2510  BOUNDED wbd 16133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16134  ax-bdim 16135  ax-bdan 16136  ax-bdal 16139  ax-bdex 16140  ax-bdeq 16141
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-cleq 2222  df-clel 2225  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516
This theorem is referenced by:  bdrmo  16177
  Copyright terms: Public domain W3C validator