Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdreu GIF version

Theorem bdreu 13224
Description: Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula 𝑥𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 13226, and (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 13193, if 𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then 𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.)

Hypothesis
Ref Expression
bdreu.1 BOUNDED 𝜑
Assertion
Ref Expression
bdreu BOUNDED ∃!𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdreu.1 . . . 4 BOUNDED 𝜑
21ax-bdex 13188 . . 3 BOUNDED𝑥𝑦 𝜑
3 ax-bdeq 13189 . . . . . 6 BOUNDED 𝑥 = 𝑧
41, 3ax-bdim 13183 . . . . 5 BOUNDED (𝜑𝑥 = 𝑧)
54ax-bdal 13187 . . . 4 BOUNDED𝑥𝑦 (𝜑𝑥 = 𝑧)
65ax-bdex 13188 . . 3 BOUNDED𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)
72, 6ax-bdan 13184 . 2 BOUNDED (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧))
8 reu3 2878 . 2 (∃!𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)))
97, 8bd0r 13194 1 BOUNDED ∃!𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wral 2417  wrex 2418  ∃!wreu 2419  BOUNDED wbd 13181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-bd0 13182  ax-bdim 13183  ax-bdan 13184  ax-bdal 13187  ax-bdex 13188  ax-bdeq 13189
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-cleq 2133  df-clel 2136  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425
This theorem is referenced by:  bdrmo  13225
  Copyright terms: Public domain W3C validator