Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biancomd | GIF version |
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
Ref | Expression |
---|---|
biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
Ref | Expression |
---|---|
biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
2 | ancom 264 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
3 | 1, 2 | bitrdi 195 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anbi1cd 465 sincosq1sgn 13541 |
Copyright terms: Public domain | W3C validator |