ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biancomd GIF version

Theorem biancomd 269
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.)
Hypothesis
Ref Expression
biancomd.1 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
Assertion
Ref Expression
biancomd (𝜑 → (𝜓 ↔ (𝜒𝜃)))

Proof of Theorem biancomd
StepHypRef Expression
1 biancomd.1 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
2 ancom 264 . 2 ((𝜃𝜒) ↔ (𝜒𝜃))
31, 2bitrdi 195 1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sincosq1sgn  13387
  Copyright terms: Public domain W3C validator