ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr1g GIF version

Theorem oppr1g 13578
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr1.2 1 = (1r𝑅)
Assertion
Ref Expression
oppr1g (𝑅𝑉1 = (1r𝑂))

Proof of Theorem oppr1g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2193 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3 opprbas.1 . . . . . . . . . . 11 𝑂 = (oppr𝑅)
4 eqid 2193 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
51, 2, 3, 4opprmulg 13567 . . . . . . . . . 10 ((𝑅𝑉𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
653expa 1205 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
76eqeq1d 2202 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
8 simpll 527 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
9 simpr 110 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
10 simplr 528 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
111, 2, 3, 4opprmulg 13567 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
128, 9, 10, 11syl3anc 1249 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1312eqeq1d 2202 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
147, 13anbi12d 473 . . . . . . 7 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑦(.r𝑅)𝑥) = 𝑦 ∧ (𝑥(.r𝑅)𝑦) = 𝑦)))
1514biancomd 271 . . . . . 6 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1615ralbidva 2490 . . . . 5 ((𝑅𝑉𝑥 ∈ (Base‘𝑅)) → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1716riotabidva 5890 . . . 4 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
18 df-riota 5873 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)))
19 df-riota 5873 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2017, 18, 193eqtr3g 2249 . . 3 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
213opprex 13569 . . . . 5 (𝑅𝑉𝑂 ∈ V)
22 eqid 2193 . . . . . 6 (mulGrp‘𝑂) = (mulGrp‘𝑂)
2322mgpex 13421 . . . . 5 (𝑂 ∈ V → (mulGrp‘𝑂) ∈ V)
24 eqid 2193 . . . . . 6 (Base‘(mulGrp‘𝑂)) = (Base‘(mulGrp‘𝑂))
25 eqid 2193 . . . . . 6 (+g‘(mulGrp‘𝑂)) = (+g‘(mulGrp‘𝑂))
26 eqid 2193 . . . . . 6 (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂))
2724, 25, 26grpidvalg 12956 . . . . 5 ((mulGrp‘𝑂) ∈ V → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
2821, 23, 273syl 17 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
293, 1opprbasg 13571 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
30 eqid 2193 . . . . . . . . . 10 (Base‘𝑂) = (Base‘𝑂)
3122, 30mgpbasg 13422 . . . . . . . . 9 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3221, 31syl 14 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3329, 32eqtrd 2226 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑂)))
3433eleq2d 2263 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑂))))
3522, 4mgpplusgg 13420 . . . . . . . . . . 11 (𝑂 ∈ V → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3621, 35syl 14 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3736oveqd 5935 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑂)𝑦) = (𝑥(+g‘(mulGrp‘𝑂))𝑦))
3837eqeq1d 2202 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦))
3936oveqd 5935 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑦(+g‘(mulGrp‘𝑂))𝑥))
4039eqeq1d 2202 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))
4138, 40anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4233, 41raleqbidv 2706 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4334, 42anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4443iotabidv 5237 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4528, 44eqtr4d 2229 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))))
46 eqid 2193 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4746mgpex 13421 . . . . 5 (𝑅𝑉 → (mulGrp‘𝑅) ∈ V)
48 eqid 2193 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
49 eqid 2193 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
50 eqid 2193 . . . . . 6 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
5148, 49, 50grpidvalg 12956 . . . . 5 ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5247, 51syl 14 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5346, 1mgpbasg 13422 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
5453eleq2d 2263 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑅))))
5546, 2mgpplusgg 13420 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
5655oveqd 5935 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
5756eqeq1d 2202 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦))
5855oveqd 5935 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑅)𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
5958eqeq1d 2202 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑅)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))
6057, 59anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6153, 60raleqbidv 2706 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6254, 61anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6362iotabidv 5237 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6452, 63eqtr4d 2229 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
6520, 45, 643eqtr4d 2236 . 2 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)))
66 eqid 2193 . . . 4 (1r𝑂) = (1r𝑂)
6722, 66ringidvalg 13457 . . 3 (𝑂 ∈ V → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
6821, 67syl 14 . 2 (𝑅𝑉 → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
69 oppr1.2 . . 3 1 = (1r𝑅)
7046, 69ringidvalg 13457 . 2 (𝑅𝑉1 = (0g‘(mulGrp‘𝑅)))
7165, 68, 703eqtr4rd 2237 1 (𝑅𝑉1 = (1r𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cio 5213  cfv 5254  crio 5872  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  0gc0g 12867  mulGrpcmgp 13416  1rcur 13455  opprcoppr 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgp 13417  df-ur 13456  df-oppr 13564
This theorem is referenced by:  opprunitd  13606  rhmopp  13672  opprnzrbg  13681
  Copyright terms: Public domain W3C validator