ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr1g GIF version

Theorem oppr1g 13786
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr1.2 1 = (1r𝑅)
Assertion
Ref Expression
oppr1g (𝑅𝑉1 = (1r𝑂))

Proof of Theorem oppr1g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2204 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3 opprbas.1 . . . . . . . . . . 11 𝑂 = (oppr𝑅)
4 eqid 2204 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
51, 2, 3, 4opprmulg 13775 . . . . . . . . . 10 ((𝑅𝑉𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
653expa 1205 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
76eqeq1d 2213 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
8 simpll 527 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
9 simpr 110 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
10 simplr 528 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
111, 2, 3, 4opprmulg 13775 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
128, 9, 10, 11syl3anc 1249 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1312eqeq1d 2213 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
147, 13anbi12d 473 . . . . . . 7 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑦(.r𝑅)𝑥) = 𝑦 ∧ (𝑥(.r𝑅)𝑦) = 𝑦)))
1514biancomd 271 . . . . . 6 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1615ralbidva 2501 . . . . 5 ((𝑅𝑉𝑥 ∈ (Base‘𝑅)) → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1716riotabidva 5915 . . . 4 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
18 df-riota 5898 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)))
19 df-riota 5898 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2017, 18, 193eqtr3g 2260 . . 3 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
213opprex 13777 . . . . 5 (𝑅𝑉𝑂 ∈ V)
22 eqid 2204 . . . . . 6 (mulGrp‘𝑂) = (mulGrp‘𝑂)
2322mgpex 13629 . . . . 5 (𝑂 ∈ V → (mulGrp‘𝑂) ∈ V)
24 eqid 2204 . . . . . 6 (Base‘(mulGrp‘𝑂)) = (Base‘(mulGrp‘𝑂))
25 eqid 2204 . . . . . 6 (+g‘(mulGrp‘𝑂)) = (+g‘(mulGrp‘𝑂))
26 eqid 2204 . . . . . 6 (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂))
2724, 25, 26grpidvalg 13147 . . . . 5 ((mulGrp‘𝑂) ∈ V → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
2821, 23, 273syl 17 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
293, 1opprbasg 13779 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
30 eqid 2204 . . . . . . . . . 10 (Base‘𝑂) = (Base‘𝑂)
3122, 30mgpbasg 13630 . . . . . . . . 9 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3221, 31syl 14 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3329, 32eqtrd 2237 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑂)))
3433eleq2d 2274 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑂))))
3522, 4mgpplusgg 13628 . . . . . . . . . . 11 (𝑂 ∈ V → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3621, 35syl 14 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3736oveqd 5960 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑂)𝑦) = (𝑥(+g‘(mulGrp‘𝑂))𝑦))
3837eqeq1d 2213 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦))
3936oveqd 5960 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑦(+g‘(mulGrp‘𝑂))𝑥))
4039eqeq1d 2213 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))
4138, 40anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4233, 41raleqbidv 2717 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4334, 42anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4443iotabidv 5253 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4528, 44eqtr4d 2240 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))))
46 eqid 2204 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4746mgpex 13629 . . . . 5 (𝑅𝑉 → (mulGrp‘𝑅) ∈ V)
48 eqid 2204 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
49 eqid 2204 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
50 eqid 2204 . . . . . 6 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
5148, 49, 50grpidvalg 13147 . . . . 5 ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5247, 51syl 14 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5346, 1mgpbasg 13630 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
5453eleq2d 2274 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑅))))
5546, 2mgpplusgg 13628 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
5655oveqd 5960 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
5756eqeq1d 2213 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦))
5855oveqd 5960 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑅)𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
5958eqeq1d 2213 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑅)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))
6057, 59anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6153, 60raleqbidv 2717 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6254, 61anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6362iotabidv 5253 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6452, 63eqtr4d 2240 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
6520, 45, 643eqtr4d 2247 . 2 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)))
66 eqid 2204 . . . 4 (1r𝑂) = (1r𝑂)
6722, 66ringidvalg 13665 . . 3 (𝑂 ∈ V → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
6821, 67syl 14 . 2 (𝑅𝑉 → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
69 oppr1.2 . . 3 1 = (1r𝑅)
7046, 69ringidvalg 13665 . 2 (𝑅𝑉1 = (0g‘(mulGrp‘𝑅)))
7165, 68, 703eqtr4rd 2248 1 (𝑅𝑉1 = (1r𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  cio 5229  cfv 5270  crio 5897  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  .rcmulr 12852  0gc0g 13030  mulGrpcmgp 13624  1rcur 13663  opprcoppr 13771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgp 13625  df-ur 13664  df-oppr 13772
This theorem is referenced by:  opprunitd  13814  rhmopp  13880  opprnzrbg  13889
  Copyright terms: Public domain W3C validator