ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr1g GIF version

Theorem oppr1g 13929
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr1.2 1 = (1r𝑅)
Assertion
Ref Expression
oppr1g (𝑅𝑉1 = (1r𝑂))

Proof of Theorem oppr1g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2206 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3 opprbas.1 . . . . . . . . . . 11 𝑂 = (oppr𝑅)
4 eqid 2206 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
51, 2, 3, 4opprmulg 13918 . . . . . . . . . 10 ((𝑅𝑉𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
653expa 1206 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
76eqeq1d 2215 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
8 simpll 527 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
9 simpr 110 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
10 simplr 528 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
111, 2, 3, 4opprmulg 13918 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
128, 9, 10, 11syl3anc 1250 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1312eqeq1d 2215 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
147, 13anbi12d 473 . . . . . . 7 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑦(.r𝑅)𝑥) = 𝑦 ∧ (𝑥(.r𝑅)𝑦) = 𝑦)))
1514biancomd 271 . . . . . 6 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1615ralbidva 2503 . . . . 5 ((𝑅𝑉𝑥 ∈ (Base‘𝑅)) → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1716riotabidva 5934 . . . 4 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
18 df-riota 5917 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)))
19 df-riota 5917 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2017, 18, 193eqtr3g 2262 . . 3 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
213opprex 13920 . . . . 5 (𝑅𝑉𝑂 ∈ V)
22 eqid 2206 . . . . . 6 (mulGrp‘𝑂) = (mulGrp‘𝑂)
2322mgpex 13772 . . . . 5 (𝑂 ∈ V → (mulGrp‘𝑂) ∈ V)
24 eqid 2206 . . . . . 6 (Base‘(mulGrp‘𝑂)) = (Base‘(mulGrp‘𝑂))
25 eqid 2206 . . . . . 6 (+g‘(mulGrp‘𝑂)) = (+g‘(mulGrp‘𝑂))
26 eqid 2206 . . . . . 6 (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂))
2724, 25, 26grpidvalg 13290 . . . . 5 ((mulGrp‘𝑂) ∈ V → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
2821, 23, 273syl 17 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
293, 1opprbasg 13922 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
30 eqid 2206 . . . . . . . . . 10 (Base‘𝑂) = (Base‘𝑂)
3122, 30mgpbasg 13773 . . . . . . . . 9 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3221, 31syl 14 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3329, 32eqtrd 2239 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑂)))
3433eleq2d 2276 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑂))))
3522, 4mgpplusgg 13771 . . . . . . . . . . 11 (𝑂 ∈ V → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3621, 35syl 14 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3736oveqd 5979 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑂)𝑦) = (𝑥(+g‘(mulGrp‘𝑂))𝑦))
3837eqeq1d 2215 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦))
3936oveqd 5979 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑦(+g‘(mulGrp‘𝑂))𝑥))
4039eqeq1d 2215 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))
4138, 40anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4233, 41raleqbidv 2719 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4334, 42anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4443iotabidv 5268 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4528, 44eqtr4d 2242 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))))
46 eqid 2206 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4746mgpex 13772 . . . . 5 (𝑅𝑉 → (mulGrp‘𝑅) ∈ V)
48 eqid 2206 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
49 eqid 2206 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
50 eqid 2206 . . . . . 6 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
5148, 49, 50grpidvalg 13290 . . . . 5 ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5247, 51syl 14 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5346, 1mgpbasg 13773 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
5453eleq2d 2276 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑅))))
5546, 2mgpplusgg 13771 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
5655oveqd 5979 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
5756eqeq1d 2215 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦))
5855oveqd 5979 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑅)𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
5958eqeq1d 2215 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑅)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))
6057, 59anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6153, 60raleqbidv 2719 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6254, 61anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6362iotabidv 5268 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6452, 63eqtr4d 2242 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
6520, 45, 643eqtr4d 2249 . 2 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)))
66 eqid 2206 . . . 4 (1r𝑂) = (1r𝑂)
6722, 66ringidvalg 13808 . . 3 (𝑂 ∈ V → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
6821, 67syl 14 . 2 (𝑅𝑉 → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
69 oppr1.2 . . 3 1 = (1r𝑅)
7046, 69ringidvalg 13808 . 2 (𝑅𝑉1 = (0g‘(mulGrp‘𝑅)))
7165, 68, 703eqtr4rd 2250 1 (𝑅𝑉1 = (1r𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cio 5244  cfv 5285  crio 5916  (class class class)co 5962  Basecbs 12917  +gcplusg 12994  .rcmulr 12995  0gc0g 13173  mulGrpcmgp 13767  1rcur 13806  opprcoppr 13914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-tpos 6349  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgp 13768  df-ur 13807  df-oppr 13915
This theorem is referenced by:  opprunitd  13957  rhmopp  14023  opprnzrbg  14032
  Copyright terms: Public domain W3C validator