ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr1g GIF version

Theorem oppr1g 13714
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr1.2 1 = (1r𝑅)
Assertion
Ref Expression
oppr1g (𝑅𝑉1 = (1r𝑂))

Proof of Theorem oppr1g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2196 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3 opprbas.1 . . . . . . . . . . 11 𝑂 = (oppr𝑅)
4 eqid 2196 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
51, 2, 3, 4opprmulg 13703 . . . . . . . . . 10 ((𝑅𝑉𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
653expa 1205 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
76eqeq1d 2205 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑦(.r𝑅)𝑥) = 𝑦))
8 simpll 527 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
9 simpr 110 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
10 simplr 528 . . . . . . . . . 10 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
111, 2, 3, 4opprmulg 13703 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
128, 9, 10, 11syl3anc 1249 . . . . . . . . 9 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1312eqeq1d 2205 . . . . . . . 8 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑥(.r𝑅)𝑦) = 𝑦))
147, 13anbi12d 473 . . . . . . 7 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑦(.r𝑅)𝑥) = 𝑦 ∧ (𝑥(.r𝑅)𝑦) = 𝑦)))
1514biancomd 271 . . . . . 6 (((𝑅𝑉𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1615ralbidva 2493 . . . . 5 ((𝑅𝑉𝑥 ∈ (Base‘𝑅)) → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
1716riotabidva 5897 . . . 4 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
18 df-riota 5880 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)))
19 df-riota 5880 . . . 4 (𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)))
2017, 18, 193eqtr3g 2252 . . 3 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
213opprex 13705 . . . . 5 (𝑅𝑉𝑂 ∈ V)
22 eqid 2196 . . . . . 6 (mulGrp‘𝑂) = (mulGrp‘𝑂)
2322mgpex 13557 . . . . 5 (𝑂 ∈ V → (mulGrp‘𝑂) ∈ V)
24 eqid 2196 . . . . . 6 (Base‘(mulGrp‘𝑂)) = (Base‘(mulGrp‘𝑂))
25 eqid 2196 . . . . . 6 (+g‘(mulGrp‘𝑂)) = (+g‘(mulGrp‘𝑂))
26 eqid 2196 . . . . . 6 (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑂))
2724, 25, 26grpidvalg 13075 . . . . 5 ((mulGrp‘𝑂) ∈ V → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
2821, 23, 273syl 17 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
293, 1opprbasg 13707 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
30 eqid 2196 . . . . . . . . . 10 (Base‘𝑂) = (Base‘𝑂)
3122, 30mgpbasg 13558 . . . . . . . . 9 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3221, 31syl 14 . . . . . . . 8 (𝑅𝑉 → (Base‘𝑂) = (Base‘(mulGrp‘𝑂)))
3329, 32eqtrd 2229 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑂)))
3433eleq2d 2266 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑂))))
3522, 4mgpplusgg 13556 . . . . . . . . . . 11 (𝑂 ∈ V → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3621, 35syl 14 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑂) = (+g‘(mulGrp‘𝑂)))
3736oveqd 5942 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑂)𝑦) = (𝑥(+g‘(mulGrp‘𝑂))𝑦))
3837eqeq1d 2205 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑂)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦))
3936oveqd 5942 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑦(+g‘(mulGrp‘𝑂))𝑥))
4039eqeq1d 2205 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑂)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))
4138, 40anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4233, 41raleqbidv 2709 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦)))
4334, 42anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4443iotabidv 5242 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑂)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑂))((𝑥(+g‘(mulGrp‘𝑂))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑂))𝑥) = 𝑦))))
4528, 44eqtr4d 2232 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑂)𝑦) = 𝑦 ∧ (𝑦(.r𝑂)𝑥) = 𝑦))))
46 eqid 2196 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4746mgpex 13557 . . . . 5 (𝑅𝑉 → (mulGrp‘𝑅) ∈ V)
48 eqid 2196 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
49 eqid 2196 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
50 eqid 2196 . . . . . 6 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
5148, 49, 50grpidvalg 13075 . . . . 5 ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5247, 51syl 14 . . . 4 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
5346, 1mgpbasg 13558 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
5453eleq2d 2266 . . . . . 6 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (Base‘(mulGrp‘𝑅))))
5546, 2mgpplusgg 13556 . . . . . . . . . 10 (𝑅𝑉 → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
5655oveqd 5942 . . . . . . . . 9 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
5756eqeq1d 2205 . . . . . . . 8 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = 𝑦 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦))
5855oveqd 5942 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑅)𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
5958eqeq1d 2205 . . . . . . . 8 (𝑅𝑉 → ((𝑦(.r𝑅)𝑥) = 𝑦 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))
6057, 59anbi12d 473 . . . . . . 7 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6153, 60raleqbidv 2709 . . . . . 6 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦)))
6254, 61anbi12d 473 . . . . 5 (𝑅𝑉 → ((𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6362iotabidv 5242 . . . 4 (𝑅𝑉 → (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))((𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑦 ∧ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑦))))
6452, 63eqtr4d 2232 . . 3 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑥(𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑦 ∧ (𝑦(.r𝑅)𝑥) = 𝑦))))
6520, 45, 643eqtr4d 2239 . 2 (𝑅𝑉 → (0g‘(mulGrp‘𝑂)) = (0g‘(mulGrp‘𝑅)))
66 eqid 2196 . . . 4 (1r𝑂) = (1r𝑂)
6722, 66ringidvalg 13593 . . 3 (𝑂 ∈ V → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
6821, 67syl 14 . 2 (𝑅𝑉 → (1r𝑂) = (0g‘(mulGrp‘𝑂)))
69 oppr1.2 . . 3 1 = (1r𝑅)
7046, 69ringidvalg 13593 . 2 (𝑅𝑉1 = (0g‘(mulGrp‘𝑅)))
7165, 68, 703eqtr4rd 2240 1 (𝑅𝑉1 = (1r𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cio 5218  cfv 5259  crio 5879  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  0gc0g 12958  mulGrpcmgp 13552  1rcur 13591  opprcoppr 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgp 13553  df-ur 13592  df-oppr 13700
This theorem is referenced by:  opprunitd  13742  rhmopp  13808  opprnzrbg  13817
  Copyright terms: Public domain W3C validator