| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincosq1sgn | GIF version | ||
| Description: The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
| Ref | Expression |
|---|---|
| sincosq1sgn | ⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8154 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | halfpire 15379 | . . . 4 ⊢ (π / 2) ∈ ℝ | |
| 3 | 2 | rexri 8165 | . . 3 ⊢ (π / 2) ∈ ℝ* |
| 4 | elioo2 10078 | . . 3 ⊢ ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)))) | |
| 5 | 1, 3, 4 | mp2an 426 | . 2 ⊢ (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2))) |
| 6 | sincosq1lem 15412 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) | |
| 7 | resubcl 8371 | . . . . . . . 8 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ) | |
| 8 | 2, 7 | mpan 424 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((π / 2) − 𝐴) ∈ ℝ) |
| 9 | sincosq1lem 15412 | . . . . . . 7 ⊢ ((((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴))) | |
| 10 | 8, 9 | syl3an1 1283 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴))) |
| 11 | 10 | 3expib 1209 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))) |
| 12 | 0re 8107 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 13 | ltsub13 8551 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0))) | |
| 14 | 12, 2, 13 | mp3an12 1340 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0))) |
| 15 | 2 | recni 8119 | . . . . . . . . . 10 ⊢ (π / 2) ∈ ℂ |
| 16 | 15 | subid1i 8379 | . . . . . . . . 9 ⊢ ((π / 2) − 0) = (π / 2) |
| 17 | 16 | breq2i 4067 | . . . . . . . 8 ⊢ (𝐴 < ((π / 2) − 0) ↔ 𝐴 < (π / 2)) |
| 18 | 14, 17 | bitrdi 196 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < (π / 2))) |
| 19 | ltsub23 8550 | . . . . . . . . 9 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴)) | |
| 20 | 2, 2, 19 | mp3an13 1341 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴)) |
| 21 | 15 | subidi 8378 | . . . . . . . . 9 ⊢ ((π / 2) − (π / 2)) = 0 |
| 22 | 21 | breq1i 4066 | . . . . . . . 8 ⊢ (((π / 2) − (π / 2)) < 𝐴 ↔ 0 < 𝐴) |
| 23 | 20, 22 | bitrdi 196 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ 0 < 𝐴)) |
| 24 | 18, 23 | anbi12d 473 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (𝐴 < (π / 2) ∧ 0 < 𝐴))) |
| 25 | 24 | biancomd 271 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (0 < 𝐴 ∧ 𝐴 < (π / 2)))) |
| 26 | recn 8093 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 27 | sinhalfpim 15408 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | |
| 28 | 26, 27 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) |
| 29 | 28 | breq2d 4071 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 < (sin‘((π / 2) − 𝐴)) ↔ 0 < (cos‘𝐴))) |
| 30 | 11, 25, 29 | 3imtr3d 202 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))) |
| 31 | 30 | 3impib 1204 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴)) |
| 32 | 6, 31 | jca 306 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) |
| 33 | 5, 32 | sylbi 121 | 1 ⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 ℝcr 7959 0cc0 7960 ℝ*cxr 8141 < clt 8142 − cmin 8278 / cdiv 8780 2c2 9122 (,)cioo 10045 sincsin 12070 cosccos 12071 πcpi 12073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ioc 10050 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 df-pi 12079 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: sincosq2sgn 15414 tanrpcl 15424 tangtx 15425 sincos6thpi 15429 |
| Copyright terms: Public domain | W3C validator |