ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsslss GIF version

Theorem lsslss 14353
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x 𝑋 = (𝑊s 𝑈)
lsslss.s 𝑆 = (LSubSp‘𝑊)
lsslss.t 𝑇 = (LSubSp‘𝑋)
Assertion
Ref Expression
lsslss ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4 𝑋 = (𝑊s 𝑈)
2 lsslss.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lsslmod 14352 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
4 eqid 2229 . . . 4 (𝑋s 𝑉) = (𝑋s 𝑉)
5 eqid 2229 . . . 4 (Base‘𝑋) = (Base‘𝑋)
6 lsslss.t . . . 4 𝑇 = (LSubSp‘𝑋)
74, 5, 6islss3 14351 . . 3 (𝑋 ∈ LMod → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
83, 7syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
91a1i 9 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 = (𝑊s 𝑈))
10 eqid 2229 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
1110a1i 9 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Base‘𝑊) = (Base‘𝑊))
12 simpl 109 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
1310, 2lssssg 14332 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
149, 11, 12, 13ressbas2d 13109 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
1514sseq2d 3254 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑈𝑉 ⊆ (Base‘𝑋)))
1615anbi1d 465 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
17 sstr2 3231 . . . . . . 7 (𝑉𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊)))
1813, 17mpan9 281 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑉 ⊆ (Base‘𝑊))
1918biantrurd 305 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
201oveq1i 6017 . . . . . . 7 (𝑋s 𝑉) = ((𝑊s 𝑈) ↾s 𝑉)
21 simplr 528 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑈𝑆)
22 simpr 110 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑉𝑈)
23 simpll 527 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑊 ∈ LMod)
24 ressabsg 13117 . . . . . . . 8 ((𝑈𝑆𝑉𝑈𝑊 ∈ LMod) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2521, 22, 23, 24syl3anc 1271 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2620, 25eqtrid 2274 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑋s 𝑉) = (𝑊s 𝑉))
2726eleq1d 2298 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ (𝑊s 𝑉) ∈ LMod))
28 eqid 2229 . . . . . . 7 (𝑊s 𝑉) = (𝑊s 𝑉)
2928, 10, 2islss3 14351 . . . . . 6 (𝑊 ∈ LMod → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
3029ad2antrr 488 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
3119, 27, 303bitr4d 220 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ 𝑉𝑆))
3231pm5.32da 452 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑈𝑉𝑆)))
3332biancomd 271 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑆𝑉𝑈)))
348, 16, 333bitr2d 216 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wss 3197  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041  LModclmod 14259  LSubSpclss 14324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-sbg 13546  df-subg 13715  df-mgp 13892  df-ur 13931  df-ring 13969  df-lmod 14261  df-lssm 14325
This theorem is referenced by:  lsslsp  14401
  Copyright terms: Public domain W3C validator