![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lsslss | GIF version |
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lsslss.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lsslss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsslss.t | ⊢ 𝑇 = (LSubSp‘𝑋) |
Ref | Expression |
---|---|
lsslss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsslss.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | lsslss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lsslmod 13472 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
4 | eqid 2177 | . . . 4 ⊢ (𝑋 ↾s 𝑉) = (𝑋 ↾s 𝑉) | |
5 | eqid 2177 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
6 | lsslss.t | . . . 4 ⊢ 𝑇 = (LSubSp‘𝑋) | |
7 | 4, 5, 6 | islss3 13471 | . . 3 ⊢ (𝑋 ∈ LMod → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
8 | 3, 7 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
9 | 1 | a1i 9 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 = (𝑊 ↾s 𝑈)) |
10 | eqid 2177 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
11 | 10 | a1i 9 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (Base‘𝑊) = (Base‘𝑊)) |
12 | simpl 109 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
13 | 10, 2 | lssssg 13452 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
14 | 9, 11, 12, 13 | ressbas2d 12530 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
15 | 14 | sseq2d 3187 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ⊆ 𝑈 ↔ 𝑉 ⊆ (Base‘𝑋))) |
16 | 15 | anbi1d 465 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
17 | sstr2 3164 | . . . . . . 7 ⊢ (𝑉 ⊆ 𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊))) | |
18 | 13, 17 | mpan9 281 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ (Base‘𝑊)) |
19 | 18 | biantrurd 305 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
20 | 1 | oveq1i 5887 | . . . . . . 7 ⊢ (𝑋 ↾s 𝑉) = ((𝑊 ↾s 𝑈) ↾s 𝑉) |
21 | simplr 528 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑆) | |
22 | simpr 110 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) | |
23 | simpll 527 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
24 | ressabsg 12537 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ∧ 𝑊 ∈ LMod) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) | |
25 | 21, 22, 23, 24 | syl3anc 1238 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
26 | 20, 25 | eqtrid 2222 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑋 ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
27 | 26 | eleq1d 2246 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ (𝑊 ↾s 𝑉) ∈ LMod)) |
28 | eqid 2177 | . . . . . . 7 ⊢ (𝑊 ↾s 𝑉) = (𝑊 ↾s 𝑉) | |
29 | 28, 10, 2 | islss3 13471 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
30 | 29 | ad2antrr 488 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
31 | 19, 27, 30 | 3bitr4d 220 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ 𝑉 ∈ 𝑆)) |
32 | 31 | pm5.32da 452 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ∈ 𝑆))) |
33 | 32 | biancomd 271 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
34 | 8, 16, 33 | 3bitr2d 216 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 ↾s cress 12465 LModclmod 13382 LSubSpclss 13447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-iress 12472 df-plusg 12551 df-mulr 12552 df-sca 12554 df-vsca 12555 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-minusg 12886 df-sbg 12887 df-subg 13035 df-mgp 13136 df-ur 13148 df-ring 13186 df-lmod 13384 df-lssm 13448 |
This theorem is referenced by: lsslsp 13520 |
Copyright terms: Public domain | W3C validator |