| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lsslss | GIF version | ||
| Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| lsslss.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lsslss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsslss.t | ⊢ 𝑇 = (LSubSp‘𝑋) |
| Ref | Expression |
|---|---|
| lsslss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslss.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | lsslss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lsslmod 14309 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
| 4 | eqid 2209 | . . . 4 ⊢ (𝑋 ↾s 𝑉) = (𝑋 ↾s 𝑉) | |
| 5 | eqid 2209 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 6 | lsslss.t | . . . 4 ⊢ 𝑇 = (LSubSp‘𝑋) | |
| 7 | 4, 5, 6 | islss3 14308 | . . 3 ⊢ (𝑋 ∈ LMod → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 8 | 3, 7 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 9 | 1 | a1i 9 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 = (𝑊 ↾s 𝑈)) |
| 10 | eqid 2209 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 11 | 10 | a1i 9 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (Base‘𝑊) = (Base‘𝑊)) |
| 12 | simpl 109 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
| 13 | 10, 2 | lssssg 14289 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 14 | 9, 11, 12, 13 | ressbas2d 13067 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 15 | 14 | sseq2d 3234 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ⊆ 𝑈 ↔ 𝑉 ⊆ (Base‘𝑋))) |
| 16 | 15 | anbi1d 465 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 17 | sstr2 3211 | . . . . . . 7 ⊢ (𝑉 ⊆ 𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊))) | |
| 18 | 13, 17 | mpan9 281 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ (Base‘𝑊)) |
| 19 | 18 | biantrurd 305 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 20 | 1 | oveq1i 5984 | . . . . . . 7 ⊢ (𝑋 ↾s 𝑉) = ((𝑊 ↾s 𝑈) ↾s 𝑉) |
| 21 | simplr 528 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑆) | |
| 22 | simpr 110 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) | |
| 23 | simpll 527 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
| 24 | ressabsg 13075 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ∧ 𝑊 ∈ LMod) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) | |
| 25 | 21, 22, 23, 24 | syl3anc 1252 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
| 26 | 20, 25 | eqtrid 2254 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑋 ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
| 27 | 26 | eleq1d 2278 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ (𝑊 ↾s 𝑉) ∈ LMod)) |
| 28 | eqid 2209 | . . . . . . 7 ⊢ (𝑊 ↾s 𝑉) = (𝑊 ↾s 𝑉) | |
| 29 | 28, 10, 2 | islss3 14308 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 30 | 29 | ad2antrr 488 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 31 | 19, 27, 30 | 3bitr4d 220 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ 𝑉 ∈ 𝑆)) |
| 32 | 31 | pm5.32da 452 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ∈ 𝑆))) |
| 33 | 32 | biancomd 271 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| 34 | 8, 16, 33 | 3bitr2d 216 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 ↾s cress 12999 LModclmod 14216 LSubSpclss 14281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-sbg 13504 df-subg 13673 df-mgp 13850 df-ur 13889 df-ring 13927 df-lmod 14218 df-lssm 14282 |
| This theorem is referenced by: lsslsp 14358 |
| Copyright terms: Public domain | W3C validator |