| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lsslss | GIF version | ||
| Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| lsslss.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lsslss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsslss.t | ⊢ 𝑇 = (LSubSp‘𝑋) |
| Ref | Expression |
|---|---|
| lsslss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslss.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | lsslss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lsslmod 14186 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
| 4 | eqid 2206 | . . . 4 ⊢ (𝑋 ↾s 𝑉) = (𝑋 ↾s 𝑉) | |
| 5 | eqid 2206 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 6 | lsslss.t | . . . 4 ⊢ 𝑇 = (LSubSp‘𝑋) | |
| 7 | 4, 5, 6 | islss3 14185 | . . 3 ⊢ (𝑋 ∈ LMod → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 8 | 3, 7 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 9 | 1 | a1i 9 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 = (𝑊 ↾s 𝑈)) |
| 10 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 11 | 10 | a1i 9 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (Base‘𝑊) = (Base‘𝑊)) |
| 12 | simpl 109 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
| 13 | 10, 2 | lssssg 14166 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 14 | 9, 11, 12, 13 | ressbas2d 12944 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 15 | 14 | sseq2d 3224 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ⊆ 𝑈 ↔ 𝑉 ⊆ (Base‘𝑋))) |
| 16 | 15 | anbi1d 465 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 17 | sstr2 3201 | . . . . . . 7 ⊢ (𝑉 ⊆ 𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊))) | |
| 18 | 13, 17 | mpan9 281 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ (Base‘𝑊)) |
| 19 | 18 | biantrurd 305 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 20 | 1 | oveq1i 5961 | . . . . . . 7 ⊢ (𝑋 ↾s 𝑉) = ((𝑊 ↾s 𝑈) ↾s 𝑉) |
| 21 | simplr 528 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑆) | |
| 22 | simpr 110 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) | |
| 23 | simpll 527 | . . . . . . . 8 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
| 24 | ressabsg 12952 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ∧ 𝑊 ∈ LMod) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) | |
| 25 | 21, 22, 23, 24 | syl3anc 1250 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
| 26 | 20, 25 | eqtrid 2251 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑋 ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
| 27 | 26 | eleq1d 2275 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ (𝑊 ↾s 𝑉) ∈ LMod)) |
| 28 | eqid 2206 | . . . . . . 7 ⊢ (𝑊 ↾s 𝑉) = (𝑊 ↾s 𝑉) | |
| 29 | 28, 10, 2 | islss3 14185 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 30 | 29 | ad2antrr 488 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 31 | 19, 27, 30 | 3bitr4d 220 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ 𝑉 ∈ 𝑆)) |
| 32 | 31 | pm5.32da 452 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ∈ 𝑆))) |
| 33 | 32 | biancomd 271 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| 34 | 8, 16, 33 | 3bitr2d 216 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 ↾s cress 12877 LModclmod 14093 LSubSpclss 14158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-subg 13550 df-mgp 13727 df-ur 13766 df-ring 13804 df-lmod 14095 df-lssm 14159 |
| This theorem is referenced by: lsslsp 14235 |
| Copyright terms: Public domain | W3C validator |