ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd GIF version

Theorem opprunitd 13666
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1 (𝜑𝑈 = (Unit‘𝑅))
opprunitd.2 (𝜑𝑆 = (oppr𝑅))
opprunitd.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
opprunitd (𝜑𝑈 = (Unit‘𝑆))

Proof of Theorem opprunitd
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6 (𝜑𝑈 = (Unit‘𝑅))
2 eqidd 2197 . . . . . 6 (𝜑 → (1r𝑅) = (1r𝑅))
3 eqidd 2197 . . . . . 6 (𝜑 → (∥r𝑅) = (∥r𝑅))
4 opprunitd.2 . . . . . 6 (𝜑𝑆 = (oppr𝑅))
5 eqidd 2197 . . . . . 6 (𝜑 → (∥r𝑆) = (∥r𝑆))
6 opprunitd.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
7 ringsrg 13603 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
86, 7syl 14 . . . . . 6 (𝜑𝑅 ∈ SRing)
91, 2, 3, 4, 5, 8isunitd 13662 . . . . 5 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
10 eqid 2196 . . . . . . . . . . . . . . 15 (oppr𝑅) = (oppr𝑅)
1110opprring 13635 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
126, 11syl 14 . . . . . . . . . . . . 13 (𝜑 → (oppr𝑅) ∈ Ring)
134, 12eqeltrd 2273 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
14 vex 2766 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 9 . . . . . . . . . . . 12 (𝜑𝑦 ∈ V)
16 vex 2766 . . . . . . . . . . . . 13 𝑥 ∈ V
1716a1i 9 . . . . . . . . . . . 12 (𝜑𝑥 ∈ V)
18 eqid 2196 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
19 eqid 2196 . . . . . . . . . . . . 13 (.r𝑆) = (.r𝑆)
20 eqid 2196 . . . . . . . . . . . . 13 (oppr𝑆) = (oppr𝑆)
21 eqid 2196 . . . . . . . . . . . . 13 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
2218, 19, 20, 21opprmulg 13627 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ 𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r‘(oppr𝑆))𝑥) = (𝑥(.r𝑆)𝑦))
2313, 15, 17, 22syl3anc 1249 . . . . . . . . . . 11 (𝜑 → (𝑦(.r‘(oppr𝑆))𝑥) = (𝑥(.r𝑆)𝑦))
244fveq2d 5562 . . . . . . . . . . . 12 (𝜑 → (.r𝑆) = (.r‘(oppr𝑅)))
2524oveqd 5939 . . . . . . . . . . 11 (𝜑 → (𝑥(.r𝑆)𝑦) = (𝑥(.r‘(oppr𝑅))𝑦))
26 eqid 2196 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2196 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
28 eqid 2196 . . . . . . . . . . . . 13 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
2926, 27, 10, 28opprmulg 13627 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
306, 17, 15, 29syl3anc 1249 . . . . . . . . . . 11 (𝜑 → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
3123, 25, 303eqtrrd 2234 . . . . . . . . . 10 (𝜑 → (𝑦(.r𝑅)𝑥) = (𝑦(.r‘(oppr𝑆))𝑥))
3231eqeq1d 2205 . . . . . . . . 9 (𝜑 → ((𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ (𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
3332rexbidv 2498 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
3433anbi2d 464 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))))
35 eqidd 2197 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
36 eqidd 2197 . . . . . . . 8 (𝜑 → (.r𝑅) = (.r𝑅))
3735, 3, 8, 36dvdsrd 13650 . . . . . . 7 (𝜑 → (𝑥(∥r𝑅)(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅))))
3810, 26opprbasg 13631 . . . . . . . . . 10 (𝑅 ∈ SRing → (Base‘𝑅) = (Base‘(oppr𝑅)))
398, 38syl 14 . . . . . . . . 9 (𝜑 → (Base‘𝑅) = (Base‘(oppr𝑅)))
404fveq2d 5562 . . . . . . . . 9 (𝜑 → (Base‘𝑆) = (Base‘(oppr𝑅)))
4120, 18opprbasg 13631 . . . . . . . . . 10 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
4213, 41syl 14 . . . . . . . . 9 (𝜑 → (Base‘𝑆) = (Base‘(oppr𝑆)))
4339, 40, 423eqtr2d 2235 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘(oppr𝑆)))
44 eqidd 2197 . . . . . . . 8 (𝜑 → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
4520opprring 13635 . . . . . . . . . 10 (𝑆 ∈ Ring → (oppr𝑆) ∈ Ring)
4613, 45syl 14 . . . . . . . . 9 (𝜑 → (oppr𝑆) ∈ Ring)
47 ringsrg 13603 . . . . . . . . 9 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ SRing)
4846, 47syl 14 . . . . . . . 8 (𝜑 → (oppr𝑆) ∈ SRing)
49 eqidd 2197 . . . . . . . 8 (𝜑 → (.r‘(oppr𝑆)) = (.r‘(oppr𝑆)))
5043, 44, 48, 49dvdsrd 13650 . . . . . . 7 (𝜑 → (𝑥(∥r‘(oppr𝑆))(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))))
5134, 37, 503bitr4d 220 . . . . . 6 (𝜑 → (𝑥(∥r𝑅)(1r𝑅) ↔ 𝑥(∥r‘(oppr𝑆))(1r𝑅)))
5251anbi1d 465 . . . . 5 (𝜑 → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅)) ↔ (𝑥(∥r‘(oppr𝑆))(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
539, 52bitrd 188 . . . 4 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r‘(oppr𝑆))(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
5453biancomd 271 . . 3 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅))))
55 eqidd 2197 . . . 4 (𝜑 → (Unit‘𝑆) = (Unit‘𝑆))
56 eqid 2196 . . . . . . 7 (1r𝑅) = (1r𝑅)
5710, 56oppr1g 13638 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) = (1r‘(oppr𝑅)))
586, 57syl 14 . . . . 5 (𝜑 → (1r𝑅) = (1r‘(oppr𝑅)))
594fveq2d 5562 . . . . 5 (𝜑 → (1r𝑆) = (1r‘(oppr𝑅)))
6058, 59eqtr4d 2232 . . . 4 (𝜑 → (1r𝑅) = (1r𝑆))
61 eqidd 2197 . . . 4 (𝜑 → (oppr𝑆) = (oppr𝑆))
62 ringsrg 13603 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
6313, 62syl 14 . . . 4 (𝜑𝑆 ∈ SRing)
6455, 60, 5, 61, 44, 63isunitd 13662 . . 3 (𝜑 → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅))))
6554, 64bitr4d 191 . 2 (𝜑 → (𝑥𝑈𝑥 ∈ (Unit‘𝑆)))
6665eqrdv 2194 1 (𝜑𝑈 = (Unit‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763   class class class wbr 4033  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  1rcur 13515  SRingcsrg 13519  Ringcrg 13552  opprcoppr 13623  rcdsr 13642  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator