ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd GIF version

Theorem opprunitd 13942
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1 (𝜑𝑈 = (Unit‘𝑅))
opprunitd.2 (𝜑𝑆 = (oppr𝑅))
opprunitd.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
opprunitd (𝜑𝑈 = (Unit‘𝑆))

Proof of Theorem opprunitd
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6 (𝜑𝑈 = (Unit‘𝑅))
2 eqidd 2207 . . . . . 6 (𝜑 → (1r𝑅) = (1r𝑅))
3 eqidd 2207 . . . . . 6 (𝜑 → (∥r𝑅) = (∥r𝑅))
4 opprunitd.2 . . . . . 6 (𝜑𝑆 = (oppr𝑅))
5 eqidd 2207 . . . . . 6 (𝜑 → (∥r𝑆) = (∥r𝑆))
6 opprunitd.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
7 ringsrg 13879 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
86, 7syl 14 . . . . . 6 (𝜑𝑅 ∈ SRing)
91, 2, 3, 4, 5, 8isunitd 13938 . . . . 5 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
10 eqid 2206 . . . . . . . . . . . . . . 15 (oppr𝑅) = (oppr𝑅)
1110opprring 13911 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
126, 11syl 14 . . . . . . . . . . . . 13 (𝜑 → (oppr𝑅) ∈ Ring)
134, 12eqeltrd 2283 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
14 vex 2776 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 9 . . . . . . . . . . . 12 (𝜑𝑦 ∈ V)
16 vex 2776 . . . . . . . . . . . . 13 𝑥 ∈ V
1716a1i 9 . . . . . . . . . . . 12 (𝜑𝑥 ∈ V)
18 eqid 2206 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
19 eqid 2206 . . . . . . . . . . . . 13 (.r𝑆) = (.r𝑆)
20 eqid 2206 . . . . . . . . . . . . 13 (oppr𝑆) = (oppr𝑆)
21 eqid 2206 . . . . . . . . . . . . 13 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
2218, 19, 20, 21opprmulg 13903 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ 𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r‘(oppr𝑆))𝑥) = (𝑥(.r𝑆)𝑦))
2313, 15, 17, 22syl3anc 1250 . . . . . . . . . . 11 (𝜑 → (𝑦(.r‘(oppr𝑆))𝑥) = (𝑥(.r𝑆)𝑦))
244fveq2d 5592 . . . . . . . . . . . 12 (𝜑 → (.r𝑆) = (.r‘(oppr𝑅)))
2524oveqd 5973 . . . . . . . . . . 11 (𝜑 → (𝑥(.r𝑆)𝑦) = (𝑥(.r‘(oppr𝑅))𝑦))
26 eqid 2206 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2206 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
28 eqid 2206 . . . . . . . . . . . . 13 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
2926, 27, 10, 28opprmulg 13903 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
306, 17, 15, 29syl3anc 1250 . . . . . . . . . . 11 (𝜑 → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
3123, 25, 303eqtrrd 2244 . . . . . . . . . 10 (𝜑 → (𝑦(.r𝑅)𝑥) = (𝑦(.r‘(oppr𝑆))𝑥))
3231eqeq1d 2215 . . . . . . . . 9 (𝜑 → ((𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ (𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
3332rexbidv 2508 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
3433anbi2d 464 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))))
35 eqidd 2207 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
36 eqidd 2207 . . . . . . . 8 (𝜑 → (.r𝑅) = (.r𝑅))
3735, 3, 8, 36dvdsrd 13926 . . . . . . 7 (𝜑 → (𝑥(∥r𝑅)(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅))))
3810, 26opprbasg 13907 . . . . . . . . . 10 (𝑅 ∈ SRing → (Base‘𝑅) = (Base‘(oppr𝑅)))
398, 38syl 14 . . . . . . . . 9 (𝜑 → (Base‘𝑅) = (Base‘(oppr𝑅)))
404fveq2d 5592 . . . . . . . . 9 (𝜑 → (Base‘𝑆) = (Base‘(oppr𝑅)))
4120, 18opprbasg 13907 . . . . . . . . . 10 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
4213, 41syl 14 . . . . . . . . 9 (𝜑 → (Base‘𝑆) = (Base‘(oppr𝑆)))
4339, 40, 423eqtr2d 2245 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘(oppr𝑆)))
44 eqidd 2207 . . . . . . . 8 (𝜑 → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
4520opprring 13911 . . . . . . . . . 10 (𝑆 ∈ Ring → (oppr𝑆) ∈ Ring)
4613, 45syl 14 . . . . . . . . 9 (𝜑 → (oppr𝑆) ∈ Ring)
47 ringsrg 13879 . . . . . . . . 9 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ SRing)
4846, 47syl 14 . . . . . . . 8 (𝜑 → (oppr𝑆) ∈ SRing)
49 eqidd 2207 . . . . . . . 8 (𝜑 → (.r‘(oppr𝑆)) = (.r‘(oppr𝑆)))
5043, 44, 48, 49dvdsrd 13926 . . . . . . 7 (𝜑 → (𝑥(∥r‘(oppr𝑆))(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))))
5134, 37, 503bitr4d 220 . . . . . 6 (𝜑 → (𝑥(∥r𝑅)(1r𝑅) ↔ 𝑥(∥r‘(oppr𝑆))(1r𝑅)))
5251anbi1d 465 . . . . 5 (𝜑 → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅)) ↔ (𝑥(∥r‘(oppr𝑆))(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
539, 52bitrd 188 . . . 4 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r‘(oppr𝑆))(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
5453biancomd 271 . . 3 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅))))
55 eqidd 2207 . . . 4 (𝜑 → (Unit‘𝑆) = (Unit‘𝑆))
56 eqid 2206 . . . . . . 7 (1r𝑅) = (1r𝑅)
5710, 56oppr1g 13914 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) = (1r‘(oppr𝑅)))
586, 57syl 14 . . . . 5 (𝜑 → (1r𝑅) = (1r‘(oppr𝑅)))
594fveq2d 5592 . . . . 5 (𝜑 → (1r𝑆) = (1r‘(oppr𝑅)))
6058, 59eqtr4d 2242 . . . 4 (𝜑 → (1r𝑅) = (1r𝑆))
61 eqidd 2207 . . . 4 (𝜑 → (oppr𝑆) = (oppr𝑆))
62 ringsrg 13879 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
6313, 62syl 14 . . . 4 (𝜑𝑆 ∈ SRing)
6455, 60, 5, 61, 44, 63isunitd 13938 . . 3 (𝜑 → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅))))
6554, 64bitr4d 191 . 2 (𝜑 → (𝑥𝑈𝑥 ∈ (Unit‘𝑆)))
6665eqrdv 2204 1 (𝜑𝑈 = (Unit‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773   class class class wbr 4050  cfv 5279  (class class class)co 5956  Basecbs 12902  .rcmulr 12980  1rcur 13791  SRingcsrg 13795  Ringcrg 13828  opprcoppr 13899  rcdsr 13918  Unitcui 13919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-lttrn 8054  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-tpos 6343  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-cmn 13692  df-abl 13693  df-mgp 13753  df-ur 13792  df-srg 13796  df-ring 13830  df-oppr 13900  df-dvdsr 13921  df-unit 13922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator