ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd GIF version

Theorem opprunitd 13341
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1 (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))
opprunitd.2 (πœ‘ β†’ 𝑆 = (opprβ€˜π‘…))
opprunitd.r (πœ‘ β†’ 𝑅 ∈ Ring)
Assertion
Ref Expression
opprunitd (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘†))

Proof of Theorem opprunitd
Dummy variables 𝑦 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6 (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))
2 eqidd 2188 . . . . . 6 (πœ‘ β†’ (1rβ€˜π‘…) = (1rβ€˜π‘…))
3 eqidd 2188 . . . . . 6 (πœ‘ β†’ (βˆ₯rβ€˜π‘…) = (βˆ₯rβ€˜π‘…))
4 opprunitd.2 . . . . . 6 (πœ‘ β†’ 𝑆 = (opprβ€˜π‘…))
5 eqidd 2188 . . . . . 6 (πœ‘ β†’ (βˆ₯rβ€˜π‘†) = (βˆ₯rβ€˜π‘†))
6 opprunitd.r . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ Ring)
7 ringsrg 13282 . . . . . . 7 (𝑅 ∈ Ring β†’ 𝑅 ∈ SRing)
86, 7syl 14 . . . . . 6 (πœ‘ β†’ 𝑅 ∈ SRing)
91, 2, 3, 4, 5, 8isunitd 13337 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ ↔ (π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜π‘†)(1rβ€˜π‘…))))
10 eqid 2187 . . . . . . . . . . . . . . 15 (opprβ€˜π‘…) = (opprβ€˜π‘…)
1110opprring 13310 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring β†’ (opprβ€˜π‘…) ∈ Ring)
126, 11syl 14 . . . . . . . . . . . . 13 (πœ‘ β†’ (opprβ€˜π‘…) ∈ Ring)
134, 12eqeltrd 2264 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑆 ∈ Ring)
14 vex 2752 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 9 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑦 ∈ V)
16 vex 2752 . . . . . . . . . . . . 13 π‘₯ ∈ V
1716a1i 9 . . . . . . . . . . . 12 (πœ‘ β†’ π‘₯ ∈ V)
18 eqid 2187 . . . . . . . . . . . . 13 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
19 eqid 2187 . . . . . . . . . . . . 13 (.rβ€˜π‘†) = (.rβ€˜π‘†)
20 eqid 2187 . . . . . . . . . . . . 13 (opprβ€˜π‘†) = (opprβ€˜π‘†)
21 eqid 2187 . . . . . . . . . . . . 13 (.rβ€˜(opprβ€˜π‘†)) = (.rβ€˜(opprβ€˜π‘†))
2218, 19, 20, 21opprmulg 13304 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ 𝑦 ∈ V ∧ π‘₯ ∈ V) β†’ (𝑦(.rβ€˜(opprβ€˜π‘†))π‘₯) = (π‘₯(.rβ€˜π‘†)𝑦))
2313, 15, 17, 22syl3anc 1248 . . . . . . . . . . 11 (πœ‘ β†’ (𝑦(.rβ€˜(opprβ€˜π‘†))π‘₯) = (π‘₯(.rβ€˜π‘†)𝑦))
244fveq2d 5531 . . . . . . . . . . . 12 (πœ‘ β†’ (.rβ€˜π‘†) = (.rβ€˜(opprβ€˜π‘…)))
2524oveqd 5905 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯(.rβ€˜π‘†)𝑦) = (π‘₯(.rβ€˜(opprβ€˜π‘…))𝑦))
26 eqid 2187 . . . . . . . . . . . . 13 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
27 eqid 2187 . . . . . . . . . . . . 13 (.rβ€˜π‘…) = (.rβ€˜π‘…)
28 eqid 2187 . . . . . . . . . . . . 13 (.rβ€˜(opprβ€˜π‘…)) = (.rβ€˜(opprβ€˜π‘…))
2926, 27, 10, 28opprmulg 13304 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯(.rβ€˜(opprβ€˜π‘…))𝑦) = (𝑦(.rβ€˜π‘…)π‘₯))
306, 17, 15, 29syl3anc 1248 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯(.rβ€˜(opprβ€˜π‘…))𝑦) = (𝑦(.rβ€˜π‘…)π‘₯))
3123, 25, 303eqtrrd 2225 . . . . . . . . . 10 (πœ‘ β†’ (𝑦(.rβ€˜π‘…)π‘₯) = (𝑦(.rβ€˜(opprβ€˜π‘†))π‘₯))
3231eqeq1d 2196 . . . . . . . . 9 (πœ‘ β†’ ((𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ↔ (𝑦(.rβ€˜(opprβ€˜π‘†))π‘₯) = (1rβ€˜π‘…)))
3332rexbidv 2488 . . . . . . . 8 (πœ‘ β†’ (βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…) ↔ βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜(opprβ€˜π‘†))π‘₯) = (1rβ€˜π‘…)))
3433anbi2d 464 . . . . . . 7 (πœ‘ β†’ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…)) ↔ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜(opprβ€˜π‘†))π‘₯) = (1rβ€˜π‘…))))
35 eqidd 2188 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘…))
36 eqidd 2188 . . . . . . . 8 (πœ‘ β†’ (.rβ€˜π‘…) = (.rβ€˜π‘…))
3735, 3, 8, 36dvdsrd 13325 . . . . . . 7 (πœ‘ β†’ (π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ↔ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜π‘…)π‘₯) = (1rβ€˜π‘…))))
3810, 26opprbasg 13308 . . . . . . . . . 10 (𝑅 ∈ SRing β†’ (Baseβ€˜π‘…) = (Baseβ€˜(opprβ€˜π‘…)))
398, 38syl 14 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜π‘…) = (Baseβ€˜(opprβ€˜π‘…)))
404fveq2d 5531 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜π‘†) = (Baseβ€˜(opprβ€˜π‘…)))
4120, 18opprbasg 13308 . . . . . . . . . 10 (𝑆 ∈ Ring β†’ (Baseβ€˜π‘†) = (Baseβ€˜(opprβ€˜π‘†)))
4213, 41syl 14 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜π‘†) = (Baseβ€˜(opprβ€˜π‘†)))
4339, 40, 423eqtr2d 2226 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜π‘…) = (Baseβ€˜(opprβ€˜π‘†)))
44 eqidd 2188 . . . . . . . 8 (πœ‘ β†’ (βˆ₯rβ€˜(opprβ€˜π‘†)) = (βˆ₯rβ€˜(opprβ€˜π‘†)))
4520opprring 13310 . . . . . . . . . 10 (𝑆 ∈ Ring β†’ (opprβ€˜π‘†) ∈ Ring)
4613, 45syl 14 . . . . . . . . 9 (πœ‘ β†’ (opprβ€˜π‘†) ∈ Ring)
47 ringsrg 13282 . . . . . . . . 9 ((opprβ€˜π‘†) ∈ Ring β†’ (opprβ€˜π‘†) ∈ SRing)
4846, 47syl 14 . . . . . . . 8 (πœ‘ β†’ (opprβ€˜π‘†) ∈ SRing)
49 eqidd 2188 . . . . . . . 8 (πœ‘ β†’ (.rβ€˜(opprβ€˜π‘†)) = (.rβ€˜(opprβ€˜π‘†)))
5043, 44, 48, 49dvdsrd 13325 . . . . . . 7 (πœ‘ β†’ (π‘₯(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘…) ↔ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ βˆƒπ‘¦ ∈ (Baseβ€˜π‘…)(𝑦(.rβ€˜(opprβ€˜π‘†))π‘₯) = (1rβ€˜π‘…))))
5134, 37, 503bitr4d 220 . . . . . 6 (πœ‘ β†’ (π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ↔ π‘₯(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘…)))
5251anbi1d 465 . . . . 5 (πœ‘ β†’ ((π‘₯(βˆ₯rβ€˜π‘…)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜π‘†)(1rβ€˜π‘…)) ↔ (π‘₯(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜π‘†)(1rβ€˜π‘…))))
539, 52bitrd 188 . . . 4 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ ↔ (π‘₯(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜π‘†)(1rβ€˜π‘…))))
5453biancomd 271 . . 3 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ ↔ (π‘₯(βˆ₯rβ€˜π‘†)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘…))))
55 eqidd 2188 . . . 4 (πœ‘ β†’ (Unitβ€˜π‘†) = (Unitβ€˜π‘†))
56 eqid 2187 . . . . . . 7 (1rβ€˜π‘…) = (1rβ€˜π‘…)
5710, 56oppr1g 13313 . . . . . 6 (𝑅 ∈ Ring β†’ (1rβ€˜π‘…) = (1rβ€˜(opprβ€˜π‘…)))
586, 57syl 14 . . . . 5 (πœ‘ β†’ (1rβ€˜π‘…) = (1rβ€˜(opprβ€˜π‘…)))
594fveq2d 5531 . . . . 5 (πœ‘ β†’ (1rβ€˜π‘†) = (1rβ€˜(opprβ€˜π‘…)))
6058, 59eqtr4d 2223 . . . 4 (πœ‘ β†’ (1rβ€˜π‘…) = (1rβ€˜π‘†))
61 eqidd 2188 . . . 4 (πœ‘ β†’ (opprβ€˜π‘†) = (opprβ€˜π‘†))
62 ringsrg 13282 . . . . 5 (𝑆 ∈ Ring β†’ 𝑆 ∈ SRing)
6313, 62syl 14 . . . 4 (πœ‘ β†’ 𝑆 ∈ SRing)
6455, 60, 5, 61, 44, 63isunitd 13337 . . 3 (πœ‘ β†’ (π‘₯ ∈ (Unitβ€˜π‘†) ↔ (π‘₯(βˆ₯rβ€˜π‘†)(1rβ€˜π‘…) ∧ π‘₯(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘…))))
6554, 64bitr4d 191 . 2 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ ↔ π‘₯ ∈ (Unitβ€˜π‘†)))
6665eqrdv 2185 1 (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘†))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1363   ∈ wcel 2158  βˆƒwrex 2466  Vcvv 2749   class class class wbr 4015  β€˜cfv 5228  (class class class)co 5888  Basecbs 12475  .rcmulr 12551  1rcur 13196  SRingcsrg 13200  Ringcrg 13233  opprcoppr 13300  βˆ₯rcdsr 13317  Unitcui 13318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-tpos 6259  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-plusg 12563  df-mulr 12564  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12837  df-grp 12899  df-minusg 12900  df-cmn 13120  df-abl 13121  df-mgp 13163  df-ur 13197  df-srg 13201  df-ring 13235  df-oppr 13301  df-dvdsr 13320  df-unit 13321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator