ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd GIF version

Theorem opprunitd 14068
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1 (𝜑𝑈 = (Unit‘𝑅))
opprunitd.2 (𝜑𝑆 = (oppr𝑅))
opprunitd.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
opprunitd (𝜑𝑈 = (Unit‘𝑆))

Proof of Theorem opprunitd
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6 (𝜑𝑈 = (Unit‘𝑅))
2 eqidd 2230 . . . . . 6 (𝜑 → (1r𝑅) = (1r𝑅))
3 eqidd 2230 . . . . . 6 (𝜑 → (∥r𝑅) = (∥r𝑅))
4 opprunitd.2 . . . . . 6 (𝜑𝑆 = (oppr𝑅))
5 eqidd 2230 . . . . . 6 (𝜑 → (∥r𝑆) = (∥r𝑆))
6 opprunitd.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
7 ringsrg 14005 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
86, 7syl 14 . . . . . 6 (𝜑𝑅 ∈ SRing)
91, 2, 3, 4, 5, 8isunitd 14064 . . . . 5 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
10 eqid 2229 . . . . . . . . . . . . . . 15 (oppr𝑅) = (oppr𝑅)
1110opprring 14037 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
126, 11syl 14 . . . . . . . . . . . . 13 (𝜑 → (oppr𝑅) ∈ Ring)
134, 12eqeltrd 2306 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
14 vex 2802 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 9 . . . . . . . . . . . 12 (𝜑𝑦 ∈ V)
16 vex 2802 . . . . . . . . . . . . 13 𝑥 ∈ V
1716a1i 9 . . . . . . . . . . . 12 (𝜑𝑥 ∈ V)
18 eqid 2229 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
19 eqid 2229 . . . . . . . . . . . . 13 (.r𝑆) = (.r𝑆)
20 eqid 2229 . . . . . . . . . . . . 13 (oppr𝑆) = (oppr𝑆)
21 eqid 2229 . . . . . . . . . . . . 13 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
2218, 19, 20, 21opprmulg 14029 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ 𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r‘(oppr𝑆))𝑥) = (𝑥(.r𝑆)𝑦))
2313, 15, 17, 22syl3anc 1271 . . . . . . . . . . 11 (𝜑 → (𝑦(.r‘(oppr𝑆))𝑥) = (𝑥(.r𝑆)𝑦))
244fveq2d 5630 . . . . . . . . . . . 12 (𝜑 → (.r𝑆) = (.r‘(oppr𝑅)))
2524oveqd 6017 . . . . . . . . . . 11 (𝜑 → (𝑥(.r𝑆)𝑦) = (𝑥(.r‘(oppr𝑅))𝑦))
26 eqid 2229 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2229 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
28 eqid 2229 . . . . . . . . . . . . 13 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
2926, 27, 10, 28opprmulg 14029 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
306, 17, 15, 29syl3anc 1271 . . . . . . . . . . 11 (𝜑 → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥))
3123, 25, 303eqtrrd 2267 . . . . . . . . . 10 (𝜑 → (𝑦(.r𝑅)𝑥) = (𝑦(.r‘(oppr𝑆))𝑥))
3231eqeq1d 2238 . . . . . . . . 9 (𝜑 → ((𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ (𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
3332rexbidv 2531 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
3433anbi2d 464 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))))
35 eqidd 2230 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
36 eqidd 2230 . . . . . . . 8 (𝜑 → (.r𝑅) = (.r𝑅))
3735, 3, 8, 36dvdsrd 14052 . . . . . . 7 (𝜑 → (𝑥(∥r𝑅)(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅))))
3810, 26opprbasg 14033 . . . . . . . . . 10 (𝑅 ∈ SRing → (Base‘𝑅) = (Base‘(oppr𝑅)))
398, 38syl 14 . . . . . . . . 9 (𝜑 → (Base‘𝑅) = (Base‘(oppr𝑅)))
404fveq2d 5630 . . . . . . . . 9 (𝜑 → (Base‘𝑆) = (Base‘(oppr𝑅)))
4120, 18opprbasg 14033 . . . . . . . . . 10 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
4213, 41syl 14 . . . . . . . . 9 (𝜑 → (Base‘𝑆) = (Base‘(oppr𝑆)))
4339, 40, 423eqtr2d 2268 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘(oppr𝑆)))
44 eqidd 2230 . . . . . . . 8 (𝜑 → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
4520opprring 14037 . . . . . . . . . 10 (𝑆 ∈ Ring → (oppr𝑆) ∈ Ring)
4613, 45syl 14 . . . . . . . . 9 (𝜑 → (oppr𝑆) ∈ Ring)
47 ringsrg 14005 . . . . . . . . 9 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ SRing)
4846, 47syl 14 . . . . . . . 8 (𝜑 → (oppr𝑆) ∈ SRing)
49 eqidd 2230 . . . . . . . 8 (𝜑 → (.r‘(oppr𝑆)) = (.r‘(oppr𝑆)))
5043, 44, 48, 49dvdsrd 14052 . . . . . . 7 (𝜑 → (𝑥(∥r‘(oppr𝑆))(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))))
5134, 37, 503bitr4d 220 . . . . . 6 (𝜑 → (𝑥(∥r𝑅)(1r𝑅) ↔ 𝑥(∥r‘(oppr𝑆))(1r𝑅)))
5251anbi1d 465 . . . . 5 (𝜑 → ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅)) ↔ (𝑥(∥r‘(oppr𝑆))(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
539, 52bitrd 188 . . . 4 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r‘(oppr𝑆))(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅))))
5453biancomd 271 . . 3 (𝜑 → (𝑥𝑈 ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅))))
55 eqidd 2230 . . . 4 (𝜑 → (Unit‘𝑆) = (Unit‘𝑆))
56 eqid 2229 . . . . . . 7 (1r𝑅) = (1r𝑅)
5710, 56oppr1g 14040 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) = (1r‘(oppr𝑅)))
586, 57syl 14 . . . . 5 (𝜑 → (1r𝑅) = (1r‘(oppr𝑅)))
594fveq2d 5630 . . . . 5 (𝜑 → (1r𝑆) = (1r‘(oppr𝑅)))
6058, 59eqtr4d 2265 . . . 4 (𝜑 → (1r𝑅) = (1r𝑆))
61 eqidd 2230 . . . 4 (𝜑 → (oppr𝑆) = (oppr𝑆))
62 ringsrg 14005 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
6313, 62syl 14 . . . 4 (𝜑𝑆 ∈ SRing)
6455, 60, 5, 61, 44, 63isunitd 14064 . . 3 (𝜑 → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅))))
6554, 64bitr4d 191 . 2 (𝜑 → (𝑥𝑈𝑥 ∈ (Unit‘𝑆)))
6665eqrdv 2227 1 (𝜑𝑈 = (Unit‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799   class class class wbr 4082  cfv 5317  (class class class)co 6000  Basecbs 13027  .rcmulr 13106  1rcur 13917  SRingcsrg 13921  Ringcrg 13954  opprcoppr 14025  rcdsr 14044  Unitcui 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator