Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.72 | GIF version |
Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Jan-2013.) |
Ref | Expression |
---|---|
pm4.72 | ⊢ ((𝜑 → 𝜓) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 706 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
2 | pm2.621 742 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | impbid2 142 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
4 | orc 707 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
5 | biimpr 129 | . . 3 ⊢ ((𝜓 ↔ (𝜑 ∨ 𝜓)) → ((𝜑 ∨ 𝜓) → 𝜓)) | |
6 | 4, 5 | syl5 32 | . 2 ⊢ ((𝜓 ↔ (𝜑 ∨ 𝜓)) → (𝜑 → 𝜓)) |
7 | 3, 6 | impbii 125 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bigolden 950 ssequn1 3297 |
Copyright terms: Public domain | W3C validator |