| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitr3ri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) | 
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) | 
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) | 
| Ref | Expression | 
|---|---|
| 3bitr3ri | ⊢ (𝜃 ↔ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | bitr3i 186 | . 2 ⊢ (𝜓 ↔ 𝜒) | 
| 5 | 1, 4 | bitr3i 186 | 1 ⊢ (𝜃 ↔ 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bigolden 957 sb9 1998 sbcco 3011 dfiin2g 3949 dffun6f 5271 | 
| Copyright terms: Public domain | W3C validator |