ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3ri GIF version

Theorem 3bitr3ri 210
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
3bitr3i.1 (𝜑𝜓)
3bitr3i.2 (𝜑𝜒)
3bitr3i.3 (𝜓𝜃)
Assertion
Ref Expression
3bitr3ri (𝜃𝜒)

Proof of Theorem 3bitr3ri
StepHypRef Expression
1 3bitr3i.3 . 2 (𝜓𝜃)
2 3bitr3i.1 . . 3 (𝜑𝜓)
3 3bitr3i.2 . . 3 (𝜑𝜒)
42, 3bitr3i 185 . 2 (𝜓𝜒)
51, 4bitr3i 185 1 (𝜃𝜒)
Colors of variables: wff set class
Syntax hints:  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bigolden  945  sb9  1967  sbcco  2972  dfiin2g  3899  dffun6f  5201
  Copyright terms: Public domain W3C validator