ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71 GIF version

Theorem pm4.71 389
Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
Assertion
Ref Expression
pm4.71 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))

Proof of Theorem pm4.71
StepHypRef Expression
1 simpl 109 . . 3 ((𝜑𝜓) → 𝜑)
21biantru 302 . 2 ((𝜑 → (𝜑𝜓)) ↔ ((𝜑 → (𝜑𝜓)) ∧ ((𝜑𝜓) → 𝜑)))
3 anclb 319 . 2 ((𝜑𝜓) ↔ (𝜑 → (𝜑𝜓)))
4 dfbi2 388 . 2 ((𝜑 ↔ (𝜑𝜓)) ↔ ((𝜑 → (𝜑𝜓)) ∧ ((𝜑𝜓) → 𝜑)))
52, 3, 43bitr4i 212 1 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71r  390  pm4.71i  391  pm4.71d  393  bigolden  955  pm5.75  962  exintrbi  1633  rabid2  2654  dfss2  3146  disj3  3477  dmopab3  4842
  Copyright terms: Public domain W3C validator