![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71 | GIF version |
Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
pm4.71 | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | biantru 302 | . 2 ⊢ ((𝜑 → (𝜑 ∧ 𝜓)) ↔ ((𝜑 → (𝜑 ∧ 𝜓)) ∧ ((𝜑 ∧ 𝜓) → 𝜑))) |
3 | anclb 319 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → (𝜑 ∧ 𝜓))) | |
4 | dfbi2 388 | . 2 ⊢ ((𝜑 ↔ (𝜑 ∧ 𝜓)) ↔ ((𝜑 → (𝜑 ∧ 𝜓)) ∧ ((𝜑 ∧ 𝜓) → 𝜑))) | |
5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.71r 390 pm4.71i 391 pm4.71d 393 bigolden 955 pm5.75 962 exintrbi 1633 rabid2 2654 dfss2 3146 disj3 3477 dmopab3 4842 |
Copyright terms: Public domain | W3C validator |