Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.75 | GIF version |
Description: Theorem *5.75 of [WhiteheadRussell] p. 126. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2012.) |
Ref | Expression |
---|---|
pm5.75 | ⊢ (((𝜒 → ¬ 𝜓) ∧ (𝜑 ↔ (𝜓 ∨ 𝜒))) → ((𝜑 ∧ ¬ 𝜓) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi1 462 | . . 3 ⊢ ((𝜑 ↔ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ ¬ 𝜓) ↔ ((𝜓 ∨ 𝜒) ∧ ¬ 𝜓))) | |
2 | orcom 718 | . . . . 5 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 2 | anbi1i 454 | . . . 4 ⊢ (((𝜓 ∨ 𝜒) ∧ ¬ 𝜓) ↔ ((𝜒 ∨ 𝜓) ∧ ¬ 𝜓)) |
4 | pm5.61 784 | . . . 4 ⊢ (((𝜒 ∨ 𝜓) ∧ ¬ 𝜓) ↔ (𝜒 ∧ ¬ 𝜓)) | |
5 | 3, 4 | bitri 183 | . . 3 ⊢ (((𝜓 ∨ 𝜒) ∧ ¬ 𝜓) ↔ (𝜒 ∧ ¬ 𝜓)) |
6 | 1, 5 | bitrdi 195 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ ¬ 𝜓) ↔ (𝜒 ∧ ¬ 𝜓))) |
7 | pm4.71 387 | . . . 4 ⊢ ((𝜒 → ¬ 𝜓) ↔ (𝜒 ↔ (𝜒 ∧ ¬ 𝜓))) | |
8 | 7 | biimpi 119 | . . 3 ⊢ ((𝜒 → ¬ 𝜓) → (𝜒 ↔ (𝜒 ∧ ¬ 𝜓))) |
9 | 8 | bicomd 140 | . 2 ⊢ ((𝜒 → ¬ 𝜓) → ((𝜒 ∧ ¬ 𝜓) ↔ 𝜒)) |
10 | 6, 9 | sylan9bbr 459 | 1 ⊢ (((𝜒 → ¬ 𝜓) ∧ (𝜑 ↔ (𝜓 ∨ 𝜒))) → ((𝜑 ∧ ¬ 𝜓) ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |