![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bibi2d | GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.74i 180 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
3 | 2 | bibi2i 227 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
4 | pm5.74 179 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
5 | pm5.74 179 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
6 | 3, 4, 5 | 3bitr4i 212 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
7 | 6 | pm5.74ri 181 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1d 233 bibi12d 235 biantr 954 bimsc1 965 eujust 2044 euf 2047 ceqex 2887 reu6i 2951 axsep2 4148 zfauscl 4149 copsexg 4273 euotd 4283 cnveq0 5122 iotaval 5226 iota5 5236 eufnfv 5789 isoeq1 5844 isoeq3 5846 isores2 5856 isores3 5858 isotr 5859 isoini2 5862 riota5f 5898 caovordg 6086 caovord 6090 dfoprab4f 6246 frecabcl 6452 nnaword 6564 xpf1o 6900 ltanqg 7460 ltmnqg 7461 ltasrg 7830 axpre-ltadd 7946 prmdvdsexp 12286 subrgsubm 13730 bdsep2 15378 bdzfauscl 15382 |
Copyright terms: Public domain | W3C validator |