ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi2d GIF version

Theorem bibi2d 232
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Hypothesis
Ref Expression
imbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bibi2d (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))

Proof of Theorem bibi2d
StepHypRef Expression
1 imbid.1 . . . . 5 (𝜑 → (𝜓𝜒))
21pm5.74i 180 . . . 4 ((𝜑𝜓) ↔ (𝜑𝜒))
32bibi2i 227 . . 3 (((𝜑𝜃) ↔ (𝜑𝜓)) ↔ ((𝜑𝜃) ↔ (𝜑𝜒)))
4 pm5.74 179 . . 3 ((𝜑 → (𝜃𝜓)) ↔ ((𝜑𝜃) ↔ (𝜑𝜓)))
5 pm5.74 179 . . 3 ((𝜑 → (𝜃𝜒)) ↔ ((𝜑𝜃) ↔ (𝜑𝜒)))
63, 4, 53bitr4i 212 . 2 ((𝜑 → (𝜃𝜓)) ↔ (𝜑 → (𝜃𝜒)))
76pm5.74ri 181 1 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi1d  233  bibi12d  235  biantr  957  bimsc1  968  eujust  2059  euf  2062  ceqex  2910  reu6i  2974  axsep2  4182  zfauscl  4183  copsexg  4309  euotd  4320  cnveq0  5161  iotaval  5266  iota5  5276  eufnfv  5843  isoeq1  5898  isoeq3  5900  isores2  5910  isores3  5912  isotr  5913  isoini2  5916  riota5f  5954  caovordg  6144  caovord  6148  dfoprab4f  6309  frecabcl  6515  nnaword  6627  xpf1o  6973  ltanqg  7555  ltmnqg  7556  ltasrg  7925  axpre-ltadd  8041  prmdvdsexp  12636  subrgsubm  14163  bdsep2  16159  bdzfauscl  16163
  Copyright terms: Public domain W3C validator