ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi2d GIF version

Theorem bibi2d 232
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Hypothesis
Ref Expression
imbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bibi2d (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))

Proof of Theorem bibi2d
StepHypRef Expression
1 imbid.1 . . . . 5 (𝜑 → (𝜓𝜒))
21pm5.74i 180 . . . 4 ((𝜑𝜓) ↔ (𝜑𝜒))
32bibi2i 227 . . 3 (((𝜑𝜃) ↔ (𝜑𝜓)) ↔ ((𝜑𝜃) ↔ (𝜑𝜒)))
4 pm5.74 179 . . 3 ((𝜑 → (𝜃𝜓)) ↔ ((𝜑𝜃) ↔ (𝜑𝜓)))
5 pm5.74 179 . . 3 ((𝜑 → (𝜃𝜒)) ↔ ((𝜑𝜃) ↔ (𝜑𝜒)))
63, 4, 53bitr4i 212 . 2 ((𝜑 → (𝜃𝜓)) ↔ (𝜑 → (𝜃𝜒)))
76pm5.74ri 181 1 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi1d  233  bibi12d  235  biantr  958  bimsc1  969  eujust  2079  euf  2082  ceqex  2930  reu6i  2994  axsep2  4203  zfauscl  4204  copsexg  4330  euotd  4341  cnveq0  5185  iotaval  5290  iota5  5300  eufnfv  5874  isoeq1  5931  isoeq3  5933  isores2  5943  isores3  5945  isotr  5946  isoini2  5949  riota5f  5987  caovordg  6179  caovord  6183  dfoprab4f  6345  frecabcl  6551  nnaword  6665  xpf1o  7013  ltanqg  7595  ltmnqg  7596  ltasrg  7965  axpre-ltadd  8081  prmdvdsexp  12678  subrgsubm  14206  wlkeq  16075  bdsep2  16273  bdzfauscl  16277
  Copyright terms: Public domain W3C validator