| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi2d | GIF version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi2d | ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.74i 180 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| 3 | 2 | bibi2i 227 | . . 3 ⊢ (((𝜑 → 𝜃) ↔ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) |
| 4 | pm5.74 179 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜓))) | |
| 5 | pm5.74 179 | . . 3 ⊢ ((𝜑 → (𝜃 ↔ 𝜒)) ↔ ((𝜑 → 𝜃) ↔ (𝜑 → 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 212 | . 2 ⊢ ((𝜑 → (𝜃 ↔ 𝜓)) ↔ (𝜑 → (𝜃 ↔ 𝜒))) |
| 7 | 6 | pm5.74ri 181 | 1 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 bibi12d 235 biantr 957 bimsc1 968 eujust 2059 euf 2062 ceqex 2910 reu6i 2974 axsep2 4182 zfauscl 4183 copsexg 4309 euotd 4320 cnveq0 5161 iotaval 5266 iota5 5276 eufnfv 5843 isoeq1 5898 isoeq3 5900 isores2 5910 isores3 5912 isotr 5913 isoini2 5916 riota5f 5954 caovordg 6144 caovord 6148 dfoprab4f 6309 frecabcl 6515 nnaword 6627 xpf1o 6973 ltanqg 7555 ltmnqg 7556 ltasrg 7925 axpre-ltadd 8041 prmdvdsexp 12636 subrgsubm 14163 bdsep2 16159 bdzfauscl 16163 |
| Copyright terms: Public domain | W3C validator |