Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdbm1.3ii GIF version

Theorem bdbm1.3ii 13891
Description: Bounded version of bm1.3ii 4108. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdbm1.3ii.bd BOUNDED 𝜑
bdbm1.3ii.1 𝑥𝑦(𝜑𝑦𝑥)
Assertion
Ref Expression
bdbm1.3ii 𝑥𝑦(𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem bdbm1.3ii
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdbm1.3ii.1 . . . . 5 𝑥𝑦(𝜑𝑦𝑥)
2 elequ2 2146 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
32imbi2d 229 . . . . . . 7 (𝑥 = 𝑧 → ((𝜑𝑦𝑥) ↔ (𝜑𝑦𝑧)))
43albidv 1817 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦(𝜑𝑦𝑥) ↔ ∀𝑦(𝜑𝑦𝑧)))
54cbvexv 1911 . . . . 5 (∃𝑥𝑦(𝜑𝑦𝑥) ↔ ∃𝑧𝑦(𝜑𝑦𝑧))
61, 5mpbi 144 . . . 4 𝑧𝑦(𝜑𝑦𝑧)
7 bdbm1.3ii.bd . . . . 5 BOUNDED 𝜑
87bdsep1 13885 . . . 4 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))
96, 8pm3.2i 270 . . 3 (∃𝑧𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑)))
109exan 1686 . 2 𝑧(∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑)))
11 19.42v 1899 . . . 4 (∃𝑥(∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) ↔ (∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))))
12 bimsc1 958 . . . . . 6 (((𝜑𝑦𝑧) ∧ (𝑦𝑥 ↔ (𝑦𝑧𝜑))) → (𝑦𝑥𝜑))
1312alanimi 1452 . . . . 5 ((∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∀𝑦(𝑦𝑥𝜑))
1413eximi 1593 . . . 4 (∃𝑥(∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∃𝑥𝑦(𝑦𝑥𝜑))
1511, 14sylbir 134 . . 3 ((∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∃𝑥𝑦(𝑦𝑥𝜑))
1615exlimiv 1591 . 2 (∃𝑧(∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∃𝑥𝑦(𝑦𝑥𝜑))
1710, 16ax-mp 5 1 𝑥𝑦(𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wex 1485  BOUNDED wbd 13812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-14 2144  ax-bdsep 13884
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bj-zfpair2  13910  bj-axun2  13915  bj-uniex2  13916
  Copyright terms: Public domain W3C validator