Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-stal GIF version

Theorem bj-stal 16113
Description: The universal quantification of a stable formula is stable. See bj-stim 16110 for implication, stabnot 838 for negation, and bj-stan 16111 for conjunction. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-stal (∀𝑥STAB 𝜑STAB𝑥𝜑)

Proof of Theorem bj-stal
StepHypRef Expression
1 nnal 1695 . . 3 (¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑)
2 alim 1503 . . 3 (∀𝑥(¬ ¬ 𝜑𝜑) → (∀𝑥 ¬ ¬ 𝜑 → ∀𝑥𝜑))
31, 2syl5 32 . 2 (∀𝑥(¬ ¬ 𝜑𝜑) → (¬ ¬ ∀𝑥𝜑 → ∀𝑥𝜑))
4 df-stab 836 . . 3 (STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
54albii 1516 . 2 (∀𝑥STAB 𝜑 ↔ ∀𝑥(¬ ¬ 𝜑𝜑))
6 df-stab 836 . 2 (STAB𝑥𝜑 ↔ (¬ ¬ ∀𝑥𝜑 → ∀𝑥𝜑))
73, 5, 63imtr4i 201 1 (∀𝑥STAB 𝜑STAB𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 835  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-stab 836  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator