![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dcn 843 stdcn 848 xordc1 1404 hbxfrbi 1483 nfalt 1589 19.29r 1632 19.31r 1692 sbimi 1775 spsbbi 1855 sbi2v 1904 euan 2094 2exeu 2130 ralimi2 2550 reximi2 2586 r19.28av 2626 r19.29r 2628 elex 2763 rmoan 2952 rmoimi2 2955 sseq2 3194 rabss2 3253 unssdif 3385 inssdif 3386 unssin 3389 inssun 3390 rabn0r 3464 undif4 3500 ssdif0im 3502 inssdif0im 3505 ssundifim 3521 ralf0 3541 prmg 3728 difprsnss 3745 snsspw 3779 pwprss 3820 pwtpss 3821 uniin 3844 intss 3880 iuniin 3911 iuneq1 3914 iuneq2 3917 iundif2ss 3967 iinuniss 3984 iunpwss 3993 intexrabim 4168 exmidundif 4221 exmidundifim 4222 exss 4242 pwunss 4298 soeq2 4331 ordunisuc2r 4528 peano5 4612 reliin 4763 coeq1 4799 coeq2 4800 cnveq 4816 dmeq 4842 dmin 4850 dmcoss 4911 rncoeq 4915 resiexg 4967 dminss 5058 imainss 5059 dfco2a 5144 euiotaex 5209 eliotaeu 5221 fununi 5300 fof 5454 f1ocnv 5490 rexrnmpt 5676 isocnv 5829 isotr 5834 oprabid 5924 dmtpos 6276 tposfn 6293 smores 6312 eqer 6586 ixpeq2 6733 enssdom 6783 fiprc 6836 fiintim 6952 ltexprlemlol 7626 ltexprlemupu 7628 recexgt0 8562 peano2uz2 9385 eluzp1p1 9578 peano2uz 9608 zq 9651 ubmelfzo 10225 frecuzrdgtcl 10438 frecuzrdgfunlem 10445 expclzaplem 10570 hashfiv01gt1 10789 fsum2dlemstep 11469 fprod2dlemstep 11657 sin02gt0 11798 qredeu 12124 prmdc 12157 subrngrng 13542 lgslem3 14841 bj-stim 14936 bj-stan 14937 bj-stal 14939 bj-nfalt 14954 bj-indint 15121 tridceq 15243 |
Copyright terms: Public domain | W3C validator |