| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3imtr4i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 843 stdcn 848 xordc1 1404 hbxfrbi 1486 nfalt 1592 19.29r 1635 19.31r 1695 sbimi 1778 spsbbi 1858 sbi2v 1907 euan 2101 2exeu 2137 ralimi2 2557 reximi2 2593 r19.28av 2633 r19.29r 2635 elex 2774 rmoan 2964 rmoimi2 2967 sseq2 3207 rabss2 3266 unssdif 3398 inssdif 3399 unssin 3402 inssun 3403 rabn0r 3477 undif4 3513 ssdif0im 3515 inssdif0im 3518 ssundifim 3534 ralf0 3553 prmg 3743 difprsnss 3760 snsspw 3794 pwprss 3835 pwtpss 3836 uniin 3859 intss 3895 iuniin 3926 iuneq1 3929 iuneq2 3932 iundif2ss 3982 iinuniss 3999 iunpwss 4008 intexrabim 4186 exmidundif 4239 exmidundifim 4240 exss 4260 pwunss 4318 soeq2 4351 ordunisuc2r 4550 peano5 4634 reliin 4785 coeq1 4823 coeq2 4824 cnveq 4840 dmeq 4866 dmin 4874 dmcoss 4935 rncoeq 4939 resiexg 4991 dminss 5084 imainss 5085 dfco2a 5170 euiotaex 5235 eliotaeu 5247 fununi 5326 fof 5480 f1ocnv 5517 rexrnmpt 5705 isocnv 5858 isotr 5863 oprabid 5954 dmtpos 6314 tposfn 6331 smores 6350 eqer 6624 ixpeq2 6771 enssdom 6821 fiprc 6874 fiintim 6992 ltexprlemlol 7669 ltexprlemupu 7671 recexgt0 8607 peano2uz2 9433 eluzp1p1 9627 peano2uz 9657 zq 9700 ubmelfzo 10276 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 expclzaplem 10655 hashfiv01gt1 10874 wrdeq 10957 fsum2dlemstep 11599 fprod2dlemstep 11787 sin02gt0 11929 qredeu 12265 prmdc 12298 subrngrng 13758 lgslem3 15243 bj-stim 15392 bj-stan 15393 bj-stal 15395 bj-nfalt 15410 bj-indint 15577 tridceq 15700 |
| Copyright terms: Public domain | W3C validator |