| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3imtr4i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 843 stdcn 848 xordc1 1412 hbxfrbi 1494 nfalt 1600 19.29r 1643 19.31r 1703 sbimi 1786 spsbbi 1866 sbi2v 1915 euan 2109 2exeu 2145 ralimi2 2565 reximi2 2601 r19.28av 2641 r19.29r 2643 elex 2782 rmoan 2972 rmoimi2 2975 sseq2 3216 rabss2 3275 unssdif 3407 inssdif 3408 unssin 3411 inssun 3412 rabn0r 3486 undif4 3522 ssdif0im 3524 inssdif0im 3527 ssundifim 3543 ralf0 3562 prmg 3753 difprsnss 3770 snsspw 3804 pwprss 3845 pwtpss 3846 uniin 3869 intss 3905 iuniin 3936 iuneq1 3939 iuneq2 3942 iundif2ss 3992 iinuniss 4009 iunpwss 4018 intexrabim 4196 exmidundif 4249 exmidundifim 4250 exss 4270 pwunss 4329 soeq2 4362 ordunisuc2r 4561 peano5 4645 reliin 4796 coeq1 4834 coeq2 4835 cnveq 4851 dmeq 4877 dmin 4885 dmcoss 4947 rncoeq 4951 resiexg 5003 dminss 5096 imainss 5097 dfco2a 5182 euiotaex 5247 eliotaeu 5259 fundif 5317 fununi 5341 fof 5497 f1ocnv 5534 rexrnmpt 5722 isocnv 5879 isotr 5884 oprabid 5975 dmtpos 6341 tposfn 6358 smores 6377 eqer 6651 ixpeq2 6798 enssdom 6852 fiprc 6906 fiintim 7027 ltexprlemlol 7714 ltexprlemupu 7716 recexgt0 8652 peano2uz2 9479 eluzp1p1 9673 peano2uz 9703 zq 9746 ubmelfzo 10327 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 expclzaplem 10706 hashfiv01gt1 10925 wrdeq 11014 fsum2dlemstep 11687 fprod2dlemstep 11875 sin02gt0 12017 qredeu 12361 prmdc 12394 subrngrng 13906 lgslem3 15421 bj-stim 15615 bj-stan 15616 bj-stal 15618 bj-nfalt 15633 bj-indint 15800 tridceq 15928 |
| Copyright terms: Public domain | W3C validator |