Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 120 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dcn 832 stdcn 837 dcan 923 xordc1 1383 hbxfrbi 1460 nfalt 1566 19.29r 1609 19.31r 1669 sbimi 1752 spsbbi 1832 sbi2v 1880 euan 2070 2exeu 2106 ralimi2 2526 reximi2 2562 r19.28av 2602 r19.29r 2604 elex 2737 rmoan 2926 rmoimi2 2929 sseq2 3166 rabss2 3225 unssdif 3357 inssdif 3358 unssin 3361 inssun 3362 rabn0r 3435 undif4 3471 ssdif0im 3473 inssdif0im 3476 ssundifim 3492 ralf0 3512 prmg 3697 difprsnss 3711 snsspw 3744 pwprss 3785 pwtpss 3786 uniin 3809 intss 3845 iuniin 3876 iuneq1 3879 iuneq2 3882 iundif2ss 3931 iinuniss 3948 iunpwss 3957 intexrabim 4132 exmidundif 4185 exmidundifim 4186 exss 4205 pwunss 4261 soeq2 4294 ordunisuc2r 4491 peano5 4575 reliin 4726 coeq1 4761 coeq2 4762 cnveq 4778 dmeq 4804 dmin 4812 dmcoss 4873 rncoeq 4877 resiexg 4929 dminss 5018 imainss 5019 dfco2a 5104 euiotaex 5169 fununi 5256 fof 5410 f1ocnv 5445 rexrnmpt 5628 isocnv 5779 isotr 5784 oprabid 5874 dmtpos 6224 tposfn 6241 smores 6260 eqer 6533 ixpeq2 6678 enssdom 6728 fiprc 6781 fiintim 6894 ltexprlemlol 7543 ltexprlemupu 7545 recexgt0 8478 peano2uz2 9298 eluzp1p1 9491 peano2uz 9521 zq 9564 ubmelfzo 10135 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 expclzaplem 10479 hashfiv01gt1 10695 fsum2dlemstep 11375 fprod2dlemstep 11563 sin02gt0 11704 qredeu 12029 prmdc 12062 lgslem3 13543 bj-stim 13627 bj-stan 13628 bj-stal 13630 bj-nfalt 13645 bj-indint 13813 tridceq 13935 |
Copyright terms: Public domain | W3C validator |