Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dcn 842 stdcn 847 dcan 933 xordc1 1393 hbxfrbi 1470 nfalt 1576 19.29r 1619 19.31r 1679 sbimi 1762 spsbbi 1842 sbi2v 1890 euan 2080 2exeu 2116 ralimi2 2535 reximi2 2571 r19.28av 2611 r19.29r 2613 elex 2746 rmoan 2935 rmoimi2 2938 sseq2 3177 rabss2 3236 unssdif 3368 inssdif 3369 unssin 3372 inssun 3373 rabn0r 3447 undif4 3483 ssdif0im 3485 inssdif0im 3488 ssundifim 3504 ralf0 3524 prmg 3710 difprsnss 3727 snsspw 3760 pwprss 3801 pwtpss 3802 uniin 3825 intss 3861 iuniin 3892 iuneq1 3895 iuneq2 3898 iundif2ss 3947 iinuniss 3964 iunpwss 3973 intexrabim 4148 exmidundif 4201 exmidundifim 4202 exss 4221 pwunss 4277 soeq2 4310 ordunisuc2r 4507 peano5 4591 reliin 4742 coeq1 4777 coeq2 4778 cnveq 4794 dmeq 4820 dmin 4828 dmcoss 4889 rncoeq 4893 resiexg 4945 dminss 5035 imainss 5036 dfco2a 5121 euiotaex 5186 eliotaeu 5197 fununi 5276 fof 5430 f1ocnv 5466 rexrnmpt 5651 isocnv 5802 isotr 5807 oprabid 5897 dmtpos 6247 tposfn 6264 smores 6283 eqer 6557 ixpeq2 6702 enssdom 6752 fiprc 6805 fiintim 6918 ltexprlemlol 7576 ltexprlemupu 7578 recexgt0 8511 peano2uz2 9333 eluzp1p1 9526 peano2uz 9556 zq 9599 ubmelfzo 10170 frecuzrdgtcl 10382 frecuzrdgfunlem 10389 expclzaplem 10514 hashfiv01gt1 10730 fsum2dlemstep 11410 fprod2dlemstep 11598 sin02gt0 11739 qredeu 12064 prmdc 12097 lgslem3 13974 bj-stim 14058 bj-stan 14059 bj-stal 14061 bj-nfalt 14076 bj-indint 14243 tridceq 14365 |
Copyright terms: Public domain | W3C validator |