| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3imtr4i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 844 stdcn 849 xordc1 1413 hbxfrbi 1496 nfalt 1602 19.29r 1645 19.31r 1705 sbimi 1788 spsbbi 1868 sbi2v 1917 euan 2111 2exeu 2147 ralimi2 2567 reximi2 2603 r19.28av 2643 r19.29r 2645 elex 2785 rmoan 2977 rmoimi2 2980 sseq2 3221 rabss2 3280 unssdif 3412 inssdif 3413 unssin 3416 inssun 3417 rabn0r 3491 undif4 3527 ssdif0im 3529 inssdif0im 3532 ssundifim 3548 ralf0 3567 prmg 3760 difprsnss 3777 snsspw 3813 pwprss 3855 pwtpss 3856 uniin 3879 intss 3915 iuniin 3946 iuneq1 3949 iuneq2 3952 iundif2ss 4002 iinuniss 4019 iunpwss 4028 intexrabim 4208 exmidundif 4261 exmidundifim 4262 exss 4284 pwunss 4343 soeq2 4376 ordunisuc2r 4575 peano5 4659 reliin 4810 coeq1 4848 coeq2 4849 cnveq 4865 dmeq 4892 dmin 4900 dmcoss 4962 rncoeq 4966 resiexg 5018 dminss 5111 imainss 5112 dfco2a 5197 euiotaex 5262 eliotaeu 5274 fundif 5332 fununi 5356 fof 5515 f1ocnv 5552 rexrnmpt 5741 isocnv 5898 isotr 5903 oprabid 5994 dmtpos 6360 tposfn 6377 smores 6396 eqer 6670 ixpeq2 6817 enssdom 6871 fiprc 6926 fiintim 7049 ltexprlemlol 7745 ltexprlemupu 7747 recexgt0 8683 peano2uz2 9510 eluzp1p1 9704 peano2uz 9734 zq 9777 ubmelfzo 10361 frecuzrdgtcl 10589 frecuzrdgfunlem 10596 expclzaplem 10740 hashfiv01gt1 10959 wrdeq 11048 fsum2dlemstep 11830 fprod2dlemstep 12018 sin02gt0 12160 qredeu 12504 prmdc 12537 subrngrng 14049 lgslem3 15564 bj-stim 15852 bj-stan 15853 bj-stal 15855 bj-nfalt 15870 bj-indint 16036 tridceq 16167 |
| Copyright terms: Public domain | W3C validator |