![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dcn 842 stdcn 847 dcan 933 xordc1 1393 hbxfrbi 1472 nfalt 1578 19.29r 1621 19.31r 1681 sbimi 1764 spsbbi 1844 sbi2v 1892 euan 2082 2exeu 2118 ralimi2 2537 reximi2 2573 r19.28av 2613 r19.29r 2615 elex 2749 rmoan 2938 rmoimi2 2941 sseq2 3180 rabss2 3239 unssdif 3371 inssdif 3372 unssin 3375 inssun 3376 rabn0r 3450 undif4 3486 ssdif0im 3488 inssdif0im 3491 ssundifim 3507 ralf0 3527 prmg 3714 difprsnss 3731 snsspw 3765 pwprss 3806 pwtpss 3807 uniin 3830 intss 3866 iuniin 3897 iuneq1 3900 iuneq2 3903 iundif2ss 3953 iinuniss 3970 iunpwss 3979 intexrabim 4154 exmidundif 4207 exmidundifim 4208 exss 4228 pwunss 4284 soeq2 4317 ordunisuc2r 4514 peano5 4598 reliin 4749 coeq1 4785 coeq2 4786 cnveq 4802 dmeq 4828 dmin 4836 dmcoss 4897 rncoeq 4901 resiexg 4953 dminss 5044 imainss 5045 dfco2a 5130 euiotaex 5195 eliotaeu 5206 fununi 5285 fof 5439 f1ocnv 5475 rexrnmpt 5660 isocnv 5812 isotr 5817 oprabid 5907 dmtpos 6257 tposfn 6274 smores 6293 eqer 6567 ixpeq2 6712 enssdom 6762 fiprc 6815 fiintim 6928 ltexprlemlol 7601 ltexprlemupu 7603 recexgt0 8537 peano2uz2 9360 eluzp1p1 9553 peano2uz 9583 zq 9626 ubmelfzo 10200 frecuzrdgtcl 10412 frecuzrdgfunlem 10419 expclzaplem 10544 hashfiv01gt1 10762 fsum2dlemstep 11442 fprod2dlemstep 11630 sin02gt0 11771 qredeu 12097 prmdc 12130 lgslem3 14406 bj-stim 14501 bj-stan 14502 bj-stal 14504 bj-nfalt 14519 bj-indint 14686 tridceq 14807 |
Copyright terms: Public domain | W3C validator |