| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3imtr4i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 847 stdcn 852 ifpdc 985 xordc1 1435 hbxfrbi 1518 nfalt 1624 19.29r 1667 19.31r 1727 sbimi 1810 spsbbi 1890 sbi2v 1939 euan 2134 2exeu 2170 ralimi2 2590 reximi2 2626 r19.28av 2667 r19.29r 2669 elex 2811 rmoan 3003 rmoimi2 3006 sseq2 3248 rabss2 3307 unssdif 3439 inssdif 3440 unssin 3443 inssun 3444 rabn0r 3518 undif4 3554 ssdif0im 3556 inssdif0im 3559 ssundifim 3575 ralf0 3594 prmg 3788 difprsnss 3805 snsspw 3841 pwprss 3883 pwtpss 3884 uniin 3907 intss 3943 iuniin 3974 iuneq1 3977 iuneq2 3980 iundif2ss 4030 iinuniss 4047 iunpwss 4056 intexrabim 4236 exmidundif 4289 exmidundifim 4290 exss 4312 pwunss 4373 soeq2 4406 ordunisuc2r 4605 peano5 4689 reliin 4840 coeq1 4878 coeq2 4879 cnveq 4895 dmeq 4922 dmin 4930 dmcoss 4993 rncoeq 4997 resiexg 5049 dminss 5142 imainss 5143 dfco2a 5228 euiotaex 5294 eliotaeu 5306 fundif 5364 fununi 5388 fof 5547 f1ocnv 5584 rexrnmpt 5777 isocnv 5934 isotr 5939 oprabid 6032 dmtpos 6400 tposfn 6417 smores 6436 eqer 6710 ixpeq2 6857 enssdom 6911 fiprc 6966 fiintim 7089 ltexprlemlol 7785 ltexprlemupu 7787 recexgt0 8723 peano2uz2 9550 eluzp1p1 9744 peano2uz 9774 zq 9817 ubmelfzo 10401 frecuzrdgtcl 10629 frecuzrdgfunlem 10636 expclzaplem 10780 hashfiv01gt1 10999 wrdeq 11088 fsum2dlemstep 11940 fprod2dlemstep 12128 sin02gt0 12270 qredeu 12614 prmdc 12647 subrngrng 14160 lgslem3 15675 bj-stim 16068 bj-stan 16069 bj-stal 16071 bj-nfalt 16086 bj-indint 16252 tridceq 16383 |
| Copyright terms: Public domain | W3C validator |