![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dcn 843 stdcn 848 xordc1 1404 hbxfrbi 1483 nfalt 1589 19.29r 1632 19.31r 1692 sbimi 1775 spsbbi 1855 sbi2v 1904 euan 2098 2exeu 2134 ralimi2 2554 reximi2 2590 r19.28av 2630 r19.29r 2632 elex 2771 rmoan 2960 rmoimi2 2963 sseq2 3203 rabss2 3262 unssdif 3394 inssdif 3395 unssin 3398 inssun 3399 rabn0r 3473 undif4 3509 ssdif0im 3511 inssdif0im 3514 ssundifim 3530 ralf0 3549 prmg 3739 difprsnss 3756 snsspw 3790 pwprss 3831 pwtpss 3832 uniin 3855 intss 3891 iuniin 3922 iuneq1 3925 iuneq2 3928 iundif2ss 3978 iinuniss 3995 iunpwss 4004 intexrabim 4182 exmidundif 4235 exmidundifim 4236 exss 4256 pwunss 4314 soeq2 4347 ordunisuc2r 4546 peano5 4630 reliin 4781 coeq1 4819 coeq2 4820 cnveq 4836 dmeq 4862 dmin 4870 dmcoss 4931 rncoeq 4935 resiexg 4987 dminss 5080 imainss 5081 dfco2a 5166 euiotaex 5231 eliotaeu 5243 fununi 5322 fof 5476 f1ocnv 5513 rexrnmpt 5701 isocnv 5854 isotr 5859 oprabid 5950 dmtpos 6309 tposfn 6326 smores 6345 eqer 6619 ixpeq2 6766 enssdom 6816 fiprc 6869 fiintim 6985 ltexprlemlol 7662 ltexprlemupu 7664 recexgt0 8599 peano2uz2 9424 eluzp1p1 9618 peano2uz 9648 zq 9691 ubmelfzo 10267 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 expclzaplem 10634 hashfiv01gt1 10853 wrdeq 10936 fsum2dlemstep 11577 fprod2dlemstep 11765 sin02gt0 11907 qredeu 12235 prmdc 12268 subrngrng 13698 lgslem3 15118 bj-stim 15238 bj-stan 15239 bj-stal 15241 bj-nfalt 15256 bj-indint 15423 tridceq 15546 |
Copyright terms: Public domain | W3C validator |