Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4i | GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 120 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dcn 837 stdcn 842 dcan 928 xordc1 1388 hbxfrbi 1465 nfalt 1571 19.29r 1614 19.31r 1674 sbimi 1757 spsbbi 1837 sbi2v 1885 euan 2075 2exeu 2111 ralimi2 2530 reximi2 2566 r19.28av 2606 r19.29r 2608 elex 2741 rmoan 2930 rmoimi2 2933 sseq2 3171 rabss2 3230 unssdif 3362 inssdif 3363 unssin 3366 inssun 3367 rabn0r 3441 undif4 3477 ssdif0im 3479 inssdif0im 3482 ssundifim 3498 ralf0 3518 prmg 3704 difprsnss 3718 snsspw 3751 pwprss 3792 pwtpss 3793 uniin 3816 intss 3852 iuniin 3883 iuneq1 3886 iuneq2 3889 iundif2ss 3938 iinuniss 3955 iunpwss 3964 intexrabim 4139 exmidundif 4192 exmidundifim 4193 exss 4212 pwunss 4268 soeq2 4301 ordunisuc2r 4498 peano5 4582 reliin 4733 coeq1 4768 coeq2 4769 cnveq 4785 dmeq 4811 dmin 4819 dmcoss 4880 rncoeq 4884 resiexg 4936 dminss 5025 imainss 5026 dfco2a 5111 euiotaex 5176 eliotaeu 5187 fununi 5266 fof 5420 f1ocnv 5455 rexrnmpt 5639 isocnv 5790 isotr 5795 oprabid 5885 dmtpos 6235 tposfn 6252 smores 6271 eqer 6545 ixpeq2 6690 enssdom 6740 fiprc 6793 fiintim 6906 ltexprlemlol 7564 ltexprlemupu 7566 recexgt0 8499 peano2uz2 9319 eluzp1p1 9512 peano2uz 9542 zq 9585 ubmelfzo 10156 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 expclzaplem 10500 hashfiv01gt1 10716 fsum2dlemstep 11397 fprod2dlemstep 11585 sin02gt0 11726 qredeu 12051 prmdc 12084 lgslem3 13697 bj-stim 13781 bj-stan 13782 bj-stal 13784 bj-nfalt 13799 bj-indint 13966 tridceq 14088 |
Copyright terms: Public domain | W3C validator |