ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12 GIF version

Theorem anim12 342
Description: Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it 'praeclarum theorema' (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
anim12 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Proof of Theorem anim12
StepHypRef Expression
1 simpl 108 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜑𝜓))
2 simpr 109 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜒𝜃))
31, 2anim12d 333 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfand  1556  equsexd  1717  mo23  2055  euind  2913  reuind  2931  reuss2  3402  opelopabt  4240  reusv3i  4437  rexanre  11162  2sqlem6  13596  bj-stan  13628
  Copyright terms: Public domain W3C validator