Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12 GIF version

Theorem anim12 341
 Description: Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it 'praeclarum theorema' (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
anim12 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Proof of Theorem anim12
StepHypRef Expression
1 simpl 108 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜑𝜓))
2 simpr 109 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜒𝜃))
31, 2anim12d 333 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107 This theorem depends on definitions:  df-bi 116 This theorem is referenced by:  nfand  1547  equsexd  1707  mo23  2040  euind  2871  reuind  2889  reuss2  3356  opelopabt  4184  reusv3i  4380  rexanre  11004  bj-stan  13039
 Copyright terms: Public domain W3C validator