ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  calemes GIF version

Theorem calemes 2135
Description: "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemes.maj 𝑥(𝜑𝜓)
calemes.min 𝑥(𝜓 → ¬ 𝜒)
Assertion
Ref Expression
calemes 𝑥(𝜒 → ¬ 𝜑)

Proof of Theorem calemes
StepHypRef Expression
1 calemes.min . . . . 5 𝑥(𝜓 → ¬ 𝜒)
21spi 1529 . . . 4 (𝜓 → ¬ 𝜒)
32con2i 622 . . 3 (𝜒 → ¬ 𝜓)
4 calemes.maj . . . 4 𝑥(𝜑𝜓)
54spi 1529 . . 3 (𝜑𝜓)
63, 5nsyl 623 . 2 (𝜒 → ¬ 𝜑)
76ax-gen 1442 1 𝑥(𝜒 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610  ax-gen 1442  ax-4 1503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator