| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > calemes | GIF version | ||
| Description: "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
| Ref | Expression |
|---|---|
| calemes.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| calemes.min | ⊢ ∀𝑥(𝜓 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| calemes | ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | calemes.min | . . . . 5 ⊢ ∀𝑥(𝜓 → ¬ 𝜒) | |
| 2 | 1 | spi 1550 | . . . 4 ⊢ (𝜓 → ¬ 𝜒) |
| 3 | 2 | con2i 628 | . . 3 ⊢ (𝜒 → ¬ 𝜓) |
| 4 | calemes.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 5 | 4 | spi 1550 | . . 3 ⊢ (𝜑 → 𝜓) |
| 6 | 3, 5 | nsyl 629 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
| 7 | 6 | ax-gen 1463 | 1 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 ax-gen 1463 ax-4 1524 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |