Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > calemes | GIF version |
Description: "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
calemes.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
calemes.min | ⊢ ∀𝑥(𝜓 → ¬ 𝜒) |
Ref | Expression |
---|---|
calemes | ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | calemes.min | . . . . 5 ⊢ ∀𝑥(𝜓 → ¬ 𝜒) | |
2 | 1 | spi 1529 | . . . 4 ⊢ (𝜓 → ¬ 𝜒) |
3 | 2 | con2i 622 | . . 3 ⊢ (𝜒 → ¬ 𝜓) |
4 | calemes.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
5 | 4 | spi 1529 | . . 3 ⊢ (𝜑 → 𝜓) |
6 | 3, 5 | nsyl 623 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
7 | 6 | ax-gen 1442 | 1 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 609 ax-in2 610 ax-gen 1442 ax-4 1503 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |