ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  darapti GIF version

Theorem darapti 2121
Description: "Darapti", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-3: MaP and MaS therefore SiP.) For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
darapti.maj 𝑥(𝜑𝜓)
darapti.min 𝑥(𝜑𝜒)
darapti.e 𝑥𝜑
Assertion
Ref Expression
darapti 𝑥(𝜒𝜓)

Proof of Theorem darapti
StepHypRef Expression
1 darapti.e . 2 𝑥𝜑
2 darapti.min . . . 4 𝑥(𝜑𝜒)
32spi 1516 . . 3 (𝜑𝜒)
4 darapti.maj . . . 4 𝑥(𝜑𝜓)
54spi 1516 . . 3 (𝜑𝜓)
63, 5jca 304 . 2 (𝜑 → (𝜒𝜓))
71, 6eximii 1582 1 𝑥(𝜒𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1333  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator