ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqel GIF version

Theorem cdeqel 3024
Description: Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
cdeqeq.1 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
cdeqeq.2 CondEq(𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
cdeqel CondEq(𝑥 = 𝑦 → (𝐴𝐶𝐵𝐷))

Proof of Theorem cdeqel
StepHypRef Expression
1 cdeqeq.1 . . . 4 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
21cdeqri 3014 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
3 cdeqeq.2 . . . 4 CondEq(𝑥 = 𝑦𝐶 = 𝐷)
43cdeqri 3014 . . 3 (𝑥 = 𝑦𝐶 = 𝐷)
52, 4eleq12d 2300 . 2 (𝑥 = 𝑦 → (𝐴𝐶𝐵𝐷))
65cdeqi 3013 1 CondEq(𝑥 = 𝑦 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  CondEqwcdeq 3011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-cdeq 3012
This theorem is referenced by:  nfccdeq  3026
  Copyright terms: Public domain W3C validator