![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir | GIF version |
Description: An inference from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbir.min | ⊢ 𝜓 |
mpbir.maj | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mpbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir.min | . 2 ⊢ 𝜓 | |
2 | mpbir.maj | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | biimpri 132 | . 2 ⊢ (𝜓 → 𝜑) |
4 | 1, 3 | ax-mp 7 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.74ri 180 imnani 666 stabnot 784 mpbir2an 894 mpbir3an 1131 tru 1303 mpgbir 1397 nfxfr 1418 19.8a 1537 sbt 1725 dveeq2 1754 dveeq2or 1755 sbequilem 1777 cbvex2 1857 dvelimALT 1946 dvelimfv 1947 dvelimor 1954 nfeuv 1978 moaneu 2036 moanmo 2037 eqeltri 2172 nfcxfr 2237 neir 2270 neirr 2276 eqnetri 2290 nesymir 2314 nelir 2365 mprgbir 2449 vex 2644 issetri 2650 moeq 2812 cdeqi 2847 ru 2861 eqsstri 3079 3sstr4i 3088 rgenm 3412 mosn 3507 rabrsndc 3538 tpid1 3581 tpid2 3583 tpid3 3586 pwv 3682 uni0 3710 eqbrtri 3894 tr0 3977 trv 3978 zfnuleu 3992 0ex 3995 inex1 4002 0elpw 4028 axpow2 4040 axpow3 4041 vpwex 4043 zfpair2 4070 exss 4087 moop2 4111 pwundifss 4145 po0 4171 epse 4202 fr0 4211 0elon 4252 onm 4261 uniex2 4296 snnex 4307 ordtriexmidlem 4373 ordtriexmid 4375 ontr2exmid 4378 ordtri2or2exmidlem 4379 onsucsssucexmid 4380 onsucelsucexmidlem 4382 ruALT 4404 zfregfr 4426 dcextest 4433 zfinf2 4441 omex 4445 finds 4452 finds2 4453 ordom 4458 omsinds 4473 relsnop 4583 relxp 4586 rel0 4602 relopabi 4603 eliunxp 4616 opeliunxp2 4617 dmi 4692 xpidtr 4865 cnvcnv 4927 dmsn0 4942 cnvsn0 4943 funmpt 5097 funmpt2 5098 funinsn 5108 isarep2 5146 f0 5249 f10 5335 f1o00 5336 f1oi 5339 f1osn 5341 brprcneu 5346 fvopab3ig 5427 opabex 5576 eufnfv 5580 mpofun 5805 reldmmpo 5814 ovid 5819 ovidig 5820 ovidi 5821 ovig 5824 ovi3 5839 oprabex 5957 oprabex3 5958 f1stres 5988 f2ndres 5989 opeliunxp2f 6065 tpos0 6101 issmo 6115 tfrlem6 6143 tfrlem8 6145 tfri1dALT 6178 tfrcl 6191 rdgfun 6200 frecfun 6222 frecfcllem 6231 0lt1o 6267 eqer 6391 ecopover 6457 ecopoverg 6460 th3qcor 6463 mapsnf1o3 6521 ssdomg 6602 ensn1 6620 xpcomf1o 6648 fiunsnnn 6704 finexdc 6725 exmidpw 6731 infnninf 6934 nnnninf 6935 pm54.43 6957 dmaddpi 7034 dmmulpi 7035 1lt2pi 7049 indpi 7051 1lt2nq 7115 genpelxp 7220 ltexprlempr 7317 recexprlempr 7341 cauappcvgprlemcl 7362 cauappcvgprlemladd 7367 caucvgprlemcl 7385 caucvgprprlemcl 7413 m1p1sr 7456 m1m1sr 7457 0lt1sr 7461 peano1nnnn 7539 ax1cn 7548 ax1re 7549 ax0lt1 7561 0lt1 7760 subaddrii 7922 ixi 8211 1ap0 8218 sup3exmid 8573 nn1suc 8597 neg1lt0 8686 4d2e2 8732 iap0 8795 un0mulcl 8863 pnf0xnn0 8899 3halfnz 9000 nummac 9078 uzf 9179 mnfltpnf 9412 ixxf 9522 ioof 9595 fzf 9635 fzp1disj 9701 fzp1nel 9725 fzo0 9786 frecfzennn 10040 frechashgf1o 10042 fxnn0nninf 10052 seq3f1olemp 10116 sq0 10224 irec 10233 hash0 10384 prhash2ex 10396 climmo 10906 sum0 10996 fisumcom2 11046 cos1bnd 11264 cos2bnd 11265 n2dvdsm1 11405 n2dvds3 11407 flodddiv4 11426 3lcm2e6woprm 11560 6lcm4e12 11561 2prm 11601 3lcm2e6 11631 unennn 11702 structcnvcnv 11757 strleun 11830 restid 11913 tgdom 12023 tgidm 12025 resttopon 12122 rest0 12130 psmetrel 12250 metrel 12270 xmetrel 12271 xmetf 12278 0met 12312 mopnrel 12369 setsmsbasg 12407 setsmsdsg 12408 qtopbasss 12443 reldvg 12521 ex-fl 12540 bj-axempty 12672 bj-axempty2 12673 bdinex1 12678 bj-zfpair2 12689 bj-uniex2 12695 bj-indint 12714 bj-omind 12717 bj-omex 12725 bj-omelon 12744 pw1dom2 12775 0nninf 12781 |
Copyright terms: Public domain | W3C validator |