ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab GIF version

Theorem cdeqab 2975
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqab CondEq(𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cdeqab
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 2971 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32abbidv 2311 . 2 (𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
43cdeqi 2970 1 CondEq(𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  {cab 2179  CondEqwcdeq 2968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-cdeq 2969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator