| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cdeqab | GIF version | ||
| Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| cdeqnot.1 | ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cdeqab | ⊢ CondEq(𝑥 = 𝑦 → {𝑧 ∣ 𝜑} = {𝑧 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdeqnot.1 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cdeqri 2994 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | abbidv 2327 | . 2 ⊢ (𝑥 = 𝑦 → {𝑧 ∣ 𝜑} = {𝑧 ∣ 𝜓}) |
| 4 | 3 | cdeqi 2993 | 1 ⊢ CondEq(𝑥 = 𝑦 → {𝑧 ∣ 𝜑} = {𝑧 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1375 {cab 2195 CondEqwcdeq 2991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-cdeq 2992 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |