ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqri GIF version

Theorem cdeqri 2971
Description: Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqri.1 CondEq(𝑥 = 𝑦𝜑)
Assertion
Ref Expression
cdeqri (𝑥 = 𝑦𝜑)

Proof of Theorem cdeqri
StepHypRef Expression
1 cdeqri.1 . 2 CondEq(𝑥 = 𝑦𝜑)
2 df-cdeq 2969 . 2 (CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
31, 2mpbi 145 1 (𝑥 = 𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  CondEqwcdeq 2968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-cdeq 2969
This theorem is referenced by:  cdeqnot  2973  cdeqal  2974  cdeqab  2975  cdeqal1  2976  cdeqab1  2977  cdeqim  2978  cdeqeq  2980  cdeqel  2981  nfcdeq  2982
  Copyright terms: Public domain W3C validator