| Intuitionistic Logic Explorer Theorem List (p. 30 of 158) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | clel5 2901* | Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.) |
| ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) | ||
| Theorem | pm13.183 2902* | Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only 𝐴 is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) | ||
| Theorem | rr19.3v 2903* | Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 25-Oct-2012.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rr19.28v 2904* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | elabgt 2905* | Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2910.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | elabgf 2906 | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | elabf 2907* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) | ||
| Theorem | elab 2908* | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) | ||
| Theorem | elabd 2909* | Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝜑 → 𝜒) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | elabg 2910* | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | elab2g 2911* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐵 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) | ||
| Theorem | elab2 2912* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐵 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) | ||
| Theorem | elab4g 2913* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐵 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) | ||
| Theorem | elab3gf 2914 | Membership in a class abstraction, with a weaker antecedent than elabgf 2906. (Contributed by NM, 6-Sep-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | elab3g 2915* | Membership in a class abstraction, with a weaker antecedent than elabg 2910. (Contributed by NM, 29-Aug-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | elab3 2916* | Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) |
| ⊢ (𝜓 → 𝐴 ∈ V) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) | ||
| Theorem | elrabi 2917* | Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| ⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) | ||
| Theorem | elrabf 2918 | Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) | ||
| Theorem | elrab3t 2919* | Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 2921.) (Contributed by Thierry Arnoux, 31-Aug-2017.) |
| ⊢ ((∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | elrab 2920* | Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) | ||
| Theorem | elrab3 2921* | Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) | ||
| Theorem | elrabd 2922* | Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2920. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
| Theorem | elrab2 2923* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) | ||
| Theorem | ralab 2924* | Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) | ||
| Theorem | ralrab 2925* | Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | ||
| Theorem | rexab 2926* | Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) | ||
| Theorem | rexrab 2927* | Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
| Theorem | ralab2 2928* | Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) | ||
| Theorem | ralrab2 2929* | Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) | ||
| Theorem | rexab2 2930* | Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) | ||
| Theorem | rexrab2 2931* | Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) | ||
| Theorem | abidnf 2932* | Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
| ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | ||
| Theorem | dedhb 2933* | A deduction theorem for converting the inference ⊢ Ⅎ𝑥𝐴 => ⊢ 𝜑 into a closed theorem. Use nfa1 1555 and nfab 2344 to eliminate the hypothesis of the substitution instance 𝜓 of the inference. For converting the inference form into a deduction form, abidnf 2932 is useful. (Contributed by NM, 8-Dec-2006.) |
| ⊢ (𝐴 = {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ (Ⅎ𝑥𝐴 → 𝜑) | ||
| Theorem | eqeu 2934* | A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) | ||
| Theorem | eueq 2935* | Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | ||
| Theorem | eueq1 2936* | Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃!𝑥 𝑥 = 𝐴 | ||
| Theorem | eueq2dc 2937* | Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (DECID 𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) | ||
| Theorem | eueq3dc 2938* | Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ¬ (𝜑 ∧ 𝜓) ⇒ ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) | ||
| Theorem | moeq 2939* | There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
| ⊢ ∃*𝑥 𝑥 = 𝐴 | ||
| Theorem | moeq3dc 2940* | "At most one" property of equality (split into 3 cases). (Contributed by Jim Kingdon, 7-Jul-2018.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ¬ (𝜑 ∧ 𝜓) ⇒ ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) | ||
| Theorem | mosubt 2941* | "At most one" remains true after substitution. (Contributed by Jim Kingdon, 18-Jan-2019.) |
| ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) | ||
| Theorem | mosub 2942* | "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.) |
| ⊢ ∃*𝑥𝜑 ⇒ ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) | ||
| Theorem | mo2icl 2943* | Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996.) |
| ⊢ (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑) | ||
| Theorem | mob2 2944* | Consequence of "at most one". (Contributed by NM, 2-Jan-2015.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) | ||
| Theorem | moi2 2945* | Consequence of "at most one". (Contributed by NM, 29-Jun-2008.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) | ||
| Theorem | mob 2946* | Equality implied by "at most one". (Contributed by NM, 18-Feb-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) | ||
| Theorem | moi 2947* | Equality implied by "at most one". (Contributed by NM, 18-Feb-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝐴 = 𝐵) | ||
| Theorem | morex 2948* | Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) | ||
| Theorem | euxfr2dc 2949* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ ∃*𝑦 𝑥 = 𝐴 ⇒ ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑)) | ||
| Theorem | euxfrdc 2950* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ ∃!𝑦 𝑥 = 𝐴 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)) | ||
| Theorem | euind 2951* | Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.) |
| ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) | ||
| Theorem | reu2 2952* | A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
| Theorem | reu6 2953* | A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) | ||
| Theorem | reu3 2954* | A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦))) | ||
| Theorem | reu6i 2955* | A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | eqreu 2956* | A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmo4 2957* | Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
| Theorem | reu4 2958* | Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) | ||
| Theorem | reu7 2959* | Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | ||
| Theorem | reu8 2960* | Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | ||
| Theorem | rmo3f 2961* | Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
| Theorem | rmo4f 2962* | Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
| Theorem | reueq 2963* | Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) | ||
| Theorem | rmoan 2964 | Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | ||
| Theorem | rmoim 2965 | Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | rmoimia 2966 | Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmoimi2 2967 | Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐵 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | 2reuswapdc 2968* | A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (DECID ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑))) | ||
| Theorem | reuind 2969* | Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ((∀𝑥∀𝑦(((𝐴 ∈ 𝐶 ∧ 𝜑) ∧ (𝐵 ∈ 𝐶 ∧ 𝜓)) → 𝐴 = 𝐵) ∧ ∃𝑥(𝐴 ∈ 𝐶 ∧ 𝜑)) → ∃!𝑧 ∈ 𝐶 ∀𝑥((𝐴 ∈ 𝐶 ∧ 𝜑) → 𝑧 = 𝐴)) | ||
| Theorem | 2rmorex 2970* | Double restricted quantification with "at most one," analogous to 2moex 2131. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | nelrdva 2971* | Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | ||
This is a very useless definition, which "abbreviates" (𝑥 = 𝑦 → 𝜑) as CondEq(𝑥 = 𝑦 → 𝜑). What this display hides, though, is that the first expression, even though it has a shorter constant string, is actually much more complicated in its parse tree: it is parsed as (wi (wceq (cv vx) (cv vy)) wph), while the CondEq version is parsed as (wcdeq vx vy wph). It also allows us to give a name to the specific ternary operation (𝑥 = 𝑦 → 𝜑). This is all used as part of a metatheorem: we want to say that ⊢ (𝑥 = 𝑦 → (𝜑(𝑥) ↔ 𝜑(𝑦))) and ⊢ (𝑥 = 𝑦 → 𝐴(𝑥) = 𝐴(𝑦)) are provable, for any expressions 𝜑(𝑥) or 𝐴(𝑥) in the language. The proof is by induction, so the base case is each of the primitives, which is why you will see a theorem for each of the set.mm primitive operations. The metatheorem comes with a disjoint variables condition: every variable in 𝜑(𝑥) is assumed disjoint from 𝑥 except 𝑥 itself. For such a proof by induction, we must consider each of the possible forms of 𝜑(𝑥). If it is a variable other than 𝑥, then we have CondEq(𝑥 = 𝑦 → 𝐴 = 𝐴) or CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜑)), which is provable by cdeqth 2976 and reflexivity. Since we are only working with class and wff expressions, it can't be 𝑥 itself in set.mm, but if it was we'd have to also prove CondEq(𝑥 = 𝑦 → 𝑥 = 𝑦) (where set equality is being used on the right). Otherwise, it is a primitive operation applied to smaller expressions. In these cases, for each setvar variable parameter to the operation, we must consider if it is equal to 𝑥 or not, which yields 2^n proof obligations. Luckily, all primitive operations in set.mm have either zero or one set variable, so we only need to prove one statement for the non-set constructors (like implication) and two for the constructors taking a set (the forall and the class builder). In each of the primitive proofs, we are allowed to assume that 𝑦 is disjoint from 𝜑(𝑥) and vice versa, because this is maintained through the induction. This is how we satisfy the disjoint variable conditions of cdeqab1 2981 and cdeqab 2979. | ||
| Syntax | wcdeq 2972 | Extend wff notation to include conditional equality. This is a technical device used in the proof that Ⅎ is the not-free predicate, and that definitions are conservative as a result. |
| wff CondEq(𝑥 = 𝑦 → 𝜑) | ||
| Definition | df-cdeq 2973 | Define conditional equality. All the notation to the left of the ↔ is fake; the parentheses and arrows are all part of the notation, which could equally well be written CondEq𝑥𝑦𝜑. On the right side is the actual implication arrow. The reason for this definition is to "flatten" the structure on the right side (whose tree structure is something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy wph). (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ (CondEq(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | cdeqi 2974 | Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ CondEq(𝑥 = 𝑦 → 𝜑) | ||
| Theorem | cdeqri 2975 | Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑥 = 𝑦 → 𝜑) | ||
| Theorem | cdeqth 2976 | Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ 𝜑 ⇒ ⊢ CondEq(𝑥 = 𝑦 → 𝜑) | ||
| Theorem | cdeqnot 2977 | Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) | ||
| Theorem | cdeqal 2978* | Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
| Theorem | cdeqab 2979* | Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑧 ∣ 𝜑} = {𝑧 ∣ 𝜓}) | ||
| Theorem | cdeqal1 2980* | Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | cdeqab1 2981* | Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | ||
| Theorem | cdeqim 2982 | Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ CondEq(𝑥 = 𝑦 → (𝜒 ↔ 𝜃)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
| Theorem | cdeqcv 2983 | Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝑥 = 𝑦) | ||
| Theorem | cdeqeq 2984 | Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
| Theorem | cdeqel 2985 | Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
| Theorem | nfcdeq 2986* | If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to Ⅎ, then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that Ⅎ𝑥𝜑 is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | nfccdeq 2987* | Variation of nfcdeq 2986 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | ru 2988 |
Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4151. (Contributed by NM, 7-Aug-1994.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
| Syntax | wsbc 2989 | Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑". |
| wff [𝐴 / 𝑥]𝜑 | ||
| Definition | df-sbc 2990 |
Define the proper substitution of a class for a set.
When 𝐴 is a proper class, our definition evaluates to false. This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3015 for our definition, which always evaluates to true for proper classes. Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 2991 below). Unfortunately, Quine's definition requires a recursive syntactical breakdown of 𝜑, and it does not seem possible to express it with a single closed formula. If we did not want to commit to any specific proper class behavior, we could use this definition only to prove Theorem dfsbcq 2991, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 2990 in the form of sbc8g 2997. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 2990 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class. The related definition df-csb defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfsbcq 2991 |
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 2990 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 2992 instead of df-sbc 2990. (dfsbcq2 2992 is needed because
unlike Quine we do not overload the df-sb 1777 syntax.) As a consequence of
these theorems, we can derive sbc8g 2997, which is a weaker version of
df-sbc 2990 that leaves substitution undefined when 𝐴 is a
proper class.
However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 2997, so we will allow direct use of df-sbc 2990. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | ||
| Theorem | dfsbcq2 2992 | This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1777 and substitution for class variables df-sbc 2990. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2991. (Contributed by NM, 31-Dec-2016.) |
| ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbsbc 2993 | Show that df-sb 1777 and df-sbc 2990 are equivalent when the class term 𝐴 in df-sbc 2990 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1777 for proofs involving df-sbc 2990. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
| Theorem | sbceq1d 2994 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | ||
| Theorem | sbceq1dd 2995 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) | ||
| Theorem | sbceqbid 2996* | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
| Theorem | sbc8g 2997 | This is the closest we can get to df-sbc 2990 if we start from dfsbcq 2991 (see its comments) and dfsbcq2 2992. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||
| Theorem | sbcex 2998 | By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | ||
| Theorem | sbceq1a 2999 | Equality theorem for class substitution. Class version of sbequ12 1785. (Contributed by NM, 26-Sep-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbceq2a 3000 | Equality theorem for class substitution. Class version of sbequ12r 1786. (Contributed by NM, 4-Jan-2017.) |
| ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |