HomeHome Intuitionistic Logic Explorer
Theorem List (p. 30 of 114)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2901-3000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbc3ie 2901* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑𝜓)
 
Theoremsbccomlem 2902* Lemma for sbccom 2903. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbccom 2903* Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbcralt 2904* Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrext 2905* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcralg 2906* Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrex 2907* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremsbcreug 2908* Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.)
(𝐴𝑉 → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcabel 2909* Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
𝑥𝐵       (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
 
Theoremrspsbc 2910* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1702 and spsbc 2840. See also rspsbca 2911 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
 
Theoremrspsbca 2911* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
 
Theoremrspesbca 2912* Existence form of rspsbca 2911. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
 
Theoremspesbc 2913 Existence form of spsbc 2840. (Contributed by Mario Carneiro, 18-Nov-2016.)
([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremspesbcd 2914 form of spsbc 2840. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑[𝐴 / 𝑥]𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theoremsbcth2 2915* A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑥𝐵𝜑)       (𝐴𝐵[𝐴 / 𝑥]𝜑)
 
Theoremra5 2916 Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1519. (Contributed by NM, 16-Jan-2004.)
𝑥𝜑       (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremrmo2ilem 2917* Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
𝑦𝜑       (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 
Theoremrmo2i 2918* Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.)
𝑦𝜑       (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 
Theoremrmo3 2919* Restricted at-most-one quantifier using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremrmob 2920* Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
 
Theoremrmoi 2921* Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
 
2.1.10  Proper substitution of classes for sets into classes
 
Syntaxcsb 2922 Extend class notation to include the proper substitution of a class for a set into another class.
class 𝐴 / 𝑥𝐵
 
Definitiondf-csb 2923* Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2829, to prevent ambiguity. Theorem sbcel1g 2939 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 2948 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
 
Theoremcsb2 2924* Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
 
Theoremcsbeq1 2925 Analog of dfsbcq 2831 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcbvcsb 2926 Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsbv 2927* Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
 
Theoremcsbeq1d 2928 Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcsbid 2929 Analog of sbid 1701 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
𝑥 / 𝑥𝐴 = 𝐴
 
Theoremcsbeq1a 2930 Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbco 2931* Composition law for chained substitutions into a class. (Contributed by NM, 10-Nov-2005.)
𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbtt 2932 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstgf 2933 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.)
𝑥𝐵       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstg 2934* Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). csbconstgf 2933 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.)
(𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremsbcel12g 2935 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbceqg 2936 Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theoremsbcnel12g 2937 Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbcne12g 2938 Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbcel1g 2939* Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵𝐶, whereas the scope of 𝐴 / 𝑥 is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
 
Theoremsbceq1g 2940* Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremsbcel2g 2941* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
 
Theoremsbceq2g 2942* Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐵 = 𝐴 / 𝑥𝐶))
 
Theoremcsbcomg 2943* Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
((𝐴𝑉𝐵𝑊) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
 
Theoremcsbeq2d 2944 Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝑥𝜑    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2dv 2945* Formula-building deduction rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
(𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2i 2946 Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐵 = 𝐶       𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶
 
Theoremcsbvarg 2947 The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
 
Theoremsbccsbg 2948* Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑}))
 
Theoremsbccsb2g 2949 Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))
 
Theoremnfcsb1d 2950 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
(𝜑𝑥𝐴)       (𝜑𝑥𝐴 / 𝑥𝐵)
 
Theoremnfcsb1 2951 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴       𝑥𝐴 / 𝑥𝐵
 
Theoremnfcsb1v 2952* Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴 / 𝑥𝐵
 
Theoremnfcsbd 2953 Deduction version of nfcsb 2954. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴 / 𝑦𝐵)
 
Theoremnfcsb 2954 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴 / 𝑦𝐵
 
Theoremcsbhypf 2955* Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2662 for class substitution version. (Contributed by NM, 19-Dec-2008.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebt 2956* Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 2960.) (Contributed by NM, 11-Nov-2005.)
((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiedf 2957* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
𝑥𝜑    &   (𝜑𝑥𝐶)    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbieb 2958* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
𝐴 ∈ V    &   𝑥𝐶       (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebg 2959* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝐶       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiegf 2960* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝐴𝑉𝑥𝐶)    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbief 2961* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbie 2962* Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbied 2963* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbied2 2964* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)       (𝜑𝐴 / 𝑥𝐶 = 𝐷)
 
Theoremcsbie2t 2965* Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 2966). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝐵 ∈ V       (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
 
Theoremcsbie2 2966* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)       𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
 
Theoremcsbie2g 2967* Conversion of implicit substitution to explicit class substitution. This version of sbcie 2862 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)    &   (𝑦 = 𝐴𝐶 = 𝐷)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐷)
 
Theoremsbcnestgf 2968 Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 
Theoremcsbnestgf 2969 Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremsbcnestg 2970* Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 
Theoremcsbnestg 2971* Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremcsbnest1g 2972 Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
 
Theoremcsbidmg 2973* Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
(𝐴𝑉𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremsbcco3g 2974* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
 
Theoremcsbco3g 2975* Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐷)
 
Theoremrspcsbela 2976* Special case related to rspsbc 2910. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝐶𝐷) → 𝐴 / 𝑥𝐶𝐷)
 
Theoremsbnfc2 2977* Two ways of expressing "𝑥 is (effectively) not free in 𝐴." (Contributed by Mario Carneiro, 14-Oct-2016.)
(𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
 
Theoremcsbabg 2978* Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴𝑉𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑})
 
Theoremcbvralcsf 2979 A more general version of cbvralf 2580 that doesn't require 𝐴 and 𝐵 to be distinct from 𝑥 or 𝑦. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓)
 
Theoremcbvrexcsf 2980 A more general version of cbvrexf 2581 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓)
 
Theoremcbvreucsf 2981 A more general version of cbvreuv 2588 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐵 𝜓)
 
Theoremcbvrabcsf 2982 A more general version of cbvrab 2613 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
 
Theoremcbvralv2 2983* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
 
Theoremcbvrexv2 2984* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒)
 
2.1.11  Define basic set operations and relations
 
Syntaxcdif 2985 Extend class notation to include class difference (read: "𝐴 minus 𝐵").
class (𝐴𝐵)
 
Syntaxcun 2986 Extend class notation to include union of two classes (read: "𝐴 union 𝐵").
class (𝐴𝐵)
 
Syntaxcin 2987 Extend class notation to include the intersection of two classes (read: "𝐴 intersect 𝐵").
class (𝐴𝐵)
 
Syntaxwss 2988 Extend wff notation to include the subclass relation. This is read "𝐴 is a subclass of 𝐵 " or "𝐵 includes 𝐴." When 𝐴 exists as a set, it is also read "𝐴 is a subset of 𝐵."
wff 𝐴𝐵
 
Theoremdifjust 2989* Soundness justification theorem for df-dif 2990. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
 
Definitiondf-dif 2990* Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. Contrast this operation with union (𝐴𝐵) (df-un 2992) and intersection (𝐴𝐵) (df-in 2994). Several notations are used in the literature; we chose the convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
 
Theoremunjust 2991* Soundness justification theorem for df-un 2992. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-un 2992* Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference (𝐴𝐵) (df-dif 2990) and intersection (𝐴𝐵) (df-in 2994). (Contributed by NM, 23-Aug-1993.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoreminjust 2993* Soundness justification theorem for df-in 2994. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-in 2994* Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴𝐵) (df-un 2992) and difference (𝐴𝐵) (df-dif 2990). (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoremdfin5 2995* Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
(𝐴𝐵) = {𝑥𝐴𝑥𝐵}
 
Theoremdfdif2 2996* Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
(𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
 
Theoremeldif 2997 Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
(𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
 
Theoremeldifd 2998 If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 2997. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐴𝐶)       (𝜑𝐴 ∈ (𝐵𝐶))
 
Theoremeldifad 2999 If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 2997. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑𝐴𝐵)
 
Theoremeldifbd 3000 If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 2997. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑 → ¬ 𝐴𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11370
  Copyright terms: Public domain < Previous  Next >