Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con2biidc | GIF version |
Description: A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.) |
Ref | Expression |
---|---|
con2biidc.1 | ⊢ (DECID 𝜓 → (𝜑 ↔ ¬ 𝜓)) |
Ref | Expression |
---|---|
con2biidc | ⊢ (DECID 𝜓 → (𝜓 ↔ ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2biidc.1 | . . . 4 ⊢ (DECID 𝜓 → (𝜑 ↔ ¬ 𝜓)) | |
2 | 1 | bicomd 140 | . . 3 ⊢ (DECID 𝜓 → (¬ 𝜓 ↔ 𝜑)) |
3 | 2 | con1biidc 872 | . 2 ⊢ (DECID 𝜓 → (¬ 𝜑 ↔ 𝜓)) |
4 | 3 | bicomd 140 | 1 ⊢ (DECID 𝜓 → (𝜓 ↔ ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-dc 830 |
This theorem is referenced by: dfexdc 1494 nnedc 2345 |
Copyright terms: Public domain | W3C validator |