ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1bidc GIF version

Theorem con1bidc 874
Description: Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
Assertion
Ref Expression
con1bidc (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑))))

Proof of Theorem con1bidc
StepHypRef Expression
1 con1biimdc 873 . . . 4 (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
21adantr 276 . . 3 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
3 con1biimdc 873 . . . 4 (DECID 𝜓 → ((¬ 𝜓𝜑) → (¬ 𝜑𝜓)))
43adantl 277 . . 3 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜓𝜑) → (¬ 𝜑𝜓)))
52, 4impbid 129 . 2 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑)))
65ex 115 1 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835
This theorem is referenced by:  con2bidc  875
  Copyright terms: Public domain W3C validator