Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con1bidc | GIF version |
Description: Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.) |
Ref | Expression |
---|---|
con1bidc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ↔ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1biimdc 863 | . . . 4 ⊢ (DECID 𝜑 → ((¬ 𝜑 ↔ 𝜓) → (¬ 𝜓 ↔ 𝜑))) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ↔ 𝜓) → (¬ 𝜓 ↔ 𝜑))) |
3 | con1biimdc 863 | . . . 4 ⊢ (DECID 𝜓 → ((¬ 𝜓 ↔ 𝜑) → (¬ 𝜑 ↔ 𝜓))) | |
4 | 3 | adantl 275 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜓 ↔ 𝜑) → (¬ 𝜑 ↔ 𝜓))) |
5 | 2, 4 | impbid 128 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ↔ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑))) |
6 | 5 | ex 114 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ↔ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: con2bidc 865 |
Copyright terms: Public domain | W3C validator |