| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > con2bidc | GIF version | ||
| Description: Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| con2bidc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con1bidc 875 | . . . . 5 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ↔ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑)))) | |
| 2 | 1 | imp 124 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ↔ 𝜓) ↔ (¬ 𝜓 ↔ 𝜑))) | 
| 3 | bicom 140 | . . . 4 ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)) | |
| 4 | bicom 140 | . . . 4 ⊢ ((¬ 𝜓 ↔ 𝜑) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr3g 222 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜓 ↔ ¬ 𝜑) ↔ (𝜑 ↔ ¬ 𝜓))) | 
| 6 | 5 | bicomd 141 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))) | 
| 7 | 6 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: annimdc 939 pm4.55dc 940 orandc 941 nbbndc 1405 | 
| Copyright terms: Public domain | W3C validator |