ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2bidc GIF version

Theorem con2bidc 865
Description: Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
Assertion
Ref Expression
con2bidc (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))))

Proof of Theorem con2bidc
StepHypRef Expression
1 con1bidc 864 . . . . 5 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑))))
21imp 123 . . . 4 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑)))
3 bicom 139 . . . 4 ((¬ 𝜑𝜓) ↔ (𝜓 ↔ ¬ 𝜑))
4 bicom 139 . . . 4 ((¬ 𝜓𝜑) ↔ (𝜑 ↔ ¬ 𝜓))
52, 3, 43bitr3g 221 . . 3 ((DECID 𝜑DECID 𝜓) → ((𝜓 ↔ ¬ 𝜑) ↔ (𝜑 ↔ ¬ 𝜓)))
65bicomd 140 . 2 ((DECID 𝜑DECID 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)))
76ex 114 1 (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  annimdc  927  pm4.55dc  928  orandc  929  nbbndc  1384
  Copyright terms: Public domain W3C validator