| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnedc | GIF version | ||
| Description: Negation of inequality where equality is decidable. (Contributed by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| nnedc | ⊢ (DECID 𝐴 = 𝐵 → (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2368 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵)) |
| 3 | 2 | con2biidc 880 | . 2 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ↔ ¬ 𝐴 ≠ 𝐵)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (DECID 𝐴 = 𝐵 → (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 DECID wdc 835 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-ne 2368 |
| This theorem is referenced by: 2omotaplemap 7340 nn0n0n1ge2b 9422 alzdvds 12036 fzo0dvdseq 12039 algcvgblem 12242 |
| Copyright terms: Public domain | W3C validator |