![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnedc | GIF version |
Description: Negation of inequality where equality is decidable. (Contributed by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
nnedc | ⊢ (DECID 𝐴 = 𝐵 → (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2348 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | 1 | a1i 9 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵)) |
3 | 2 | con2biidc 879 | . 2 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ↔ ¬ 𝐴 ≠ 𝐵)) |
4 | 3 | bicomd 141 | 1 ⊢ (DECID 𝐴 = 𝐵 → (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 DECID wdc 834 = wceq 1353 ≠ wne 2347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-ne 2348 |
This theorem is referenced by: 2omotaplemap 7258 nn0n0n1ge2b 9334 alzdvds 11862 fzo0dvdseq 11865 algcvgblem 12051 |
Copyright terms: Public domain | W3C validator |