ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2biddc GIF version

Theorem con2biddc 870
Description: A contraposition deduction. (Contributed by Jim Kingdon, 11-Apr-2018.)
Hypothesis
Ref Expression
con2biddc.1 (𝜑 → (DECID 𝜒 → (𝜓 ↔ ¬ 𝜒)))
Assertion
Ref Expression
con2biddc (𝜑 → (DECID 𝜒 → (𝜒 ↔ ¬ 𝜓)))

Proof of Theorem con2biddc
StepHypRef Expression
1 con2biddc.1 . . . 4 (𝜑 → (DECID 𝜒 → (𝜓 ↔ ¬ 𝜒)))
2 bicom 139 . . . 4 ((𝜓 ↔ ¬ 𝜒) ↔ (¬ 𝜒𝜓))
31, 2syl6ib 160 . . 3 (𝜑 → (DECID 𝜒 → (¬ 𝜒𝜓)))
43con1biddc 866 . 2 (𝜑 → (DECID 𝜒 → (¬ 𝜓𝜒)))
5 bicom 139 . 2 ((¬ 𝜓𝜒) ↔ (𝜒 ↔ ¬ 𝜓))
64, 5syl6ib 160 1 (𝜑 → (DECID 𝜒 → (𝜒 ↔ ¬ 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  anordc  946  xor3dc  1377
  Copyright terms: Public domain W3C validator