ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfexdc GIF version

Theorem dfexdc 1489
Description: Defining 𝑥𝜑 given decidability. It is common in classical logic to define 𝑥𝜑 as ¬ ∀𝑥¬ 𝜑 but in intuitionistic logic without a decidability condition, that is only an implication not an equivalence, as seen at exalim 1490. (Contributed by Jim Kingdon, 15-Mar-2018.)
Assertion
Ref Expression
dfexdc (DECID𝑥𝜑 → (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑))

Proof of Theorem dfexdc
StepHypRef Expression
1 alnex 1487 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
21a1i 9 . 2 (DECID𝑥𝜑 → (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑))
32con2biidc 869 1 (DECID𝑥𝜑 → (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  DECID wdc 824  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349
This theorem is referenced by:  dfrex2dc  2457
  Copyright terms: Public domain W3C validator