ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2og GIF version

Theorem snnen2og 6856
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6857. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2og (𝐴𝑉 → ¬ {𝐴} ≈ 2o)

Proof of Theorem snnen2og
StepHypRef Expression
1 1onn 6518 . . 3 1o ∈ ω
2 php5 6855 . . 3 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . 2 ¬ 1o ≈ suc 1o
4 ensn1g 6794 . 2 (𝐴𝑉 → {𝐴} ≈ 1o)
5 df-2o 6415 . . . . 5 2o = suc 1o
65eqcomi 2181 . . . 4 suc 1o = 2o
76breq2i 4010 . . 3 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 6777 . . . . 5 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 6781 . . . . . 6 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 115 . . . . 5 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 121 . . . 4 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 633 . . 3 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 678 . 2 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 65 1 (𝐴𝑉 → ¬ {𝐴} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2148  {csn 3592   class class class wbr 4002  suc csuc 4364  ωcom 4588  1oc1o 6407  2oc2o 6408  cen 6735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-tr 4101  df-id 4292  df-iord 4365  df-on 4367  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-1o 6414  df-2o 6415  df-er 6532  df-en 6738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator