| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnen2og | GIF version | ||
| Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6969. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| snnen2og | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6616 | . . 3 ⊢ 1o ∈ ω | |
| 2 | php5 6967 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
| 4 | ensn1g 6899 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 5 | df-2o 6513 | . . . . 5 ⊢ 2o = suc 1o | |
| 6 | 5 | eqcomi 2210 | . . . 4 ⊢ suc 1o = 2o |
| 7 | 6 | breq2i 4056 | . . 3 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
| 8 | ensymb 6882 | . . . . 5 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
| 9 | entr 6886 | . . . . . 6 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
| 10 | 9 | ex 115 | . . . . 5 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
| 11 | 8, 10 | sylbi 121 | . . . 4 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
| 12 | 11 | con3rr3 634 | . . 3 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
| 13 | 7, 12 | sylnbi 680 | . 2 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
| 14 | 3, 4, 13 | mpsyl 65 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2177 {csn 3635 class class class wbr 4048 suc csuc 4417 ωcom 4643 1oc1o 6505 2oc2o 6506 ≈ cen 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |