| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnen2og | GIF version | ||
| Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 7009. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| snnen2og | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6656 | . . 3 ⊢ 1o ∈ ω | |
| 2 | php5 7007 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
| 4 | ensn1g 6939 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 5 | df-2o 6553 | . . . . 5 ⊢ 2o = suc 1o | |
| 6 | 5 | eqcomi 2233 | . . . 4 ⊢ suc 1o = 2o |
| 7 | 6 | breq2i 4090 | . . 3 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
| 8 | ensymb 6922 | . . . . 5 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
| 9 | entr 6926 | . . . . . 6 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
| 10 | 9 | ex 115 | . . . . 5 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
| 11 | 8, 10 | sylbi 121 | . . . 4 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
| 12 | 11 | con3rr3 636 | . . 3 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
| 13 | 7, 12 | sylnbi 682 | . 2 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
| 14 | 3, 4, 13 | mpsyl 65 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2200 {csn 3666 class class class wbr 4082 suc csuc 4453 ωcom 4679 1oc1o 6545 2oc2o 6546 ≈ cen 6875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1o 6552 df-2o 6553 df-er 6670 df-en 6878 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |