ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2og GIF version

Theorem snnen2og 6761
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6762. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2og (𝐴𝑉 → ¬ {𝐴} ≈ 2o)

Proof of Theorem snnen2og
StepHypRef Expression
1 1onn 6424 . . 3 1o ∈ ω
2 php5 6760 . . 3 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . 2 ¬ 1o ≈ suc 1o
4 ensn1g 6699 . 2 (𝐴𝑉 → {𝐴} ≈ 1o)
5 df-2o 6322 . . . . 5 2o = suc 1o
65eqcomi 2144 . . . 4 suc 1o = 2o
76breq2i 3945 . . 3 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 6682 . . . . 5 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 6686 . . . . . 6 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 114 . . . . 5 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 120 . . . 4 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 623 . . 3 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 668 . 2 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 65 1 (𝐴𝑉 → ¬ {𝐴} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 1481  {csn 3532   class class class wbr 3937  suc csuc 4295  ωcom 4512  1oc1o 6314  2oc2o 6315  cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator