ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2og GIF version

Theorem snnen2og 6968
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6969. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2og (𝐴𝑉 → ¬ {𝐴} ≈ 2o)

Proof of Theorem snnen2og
StepHypRef Expression
1 1onn 6616 . . 3 1o ∈ ω
2 php5 6967 . . 3 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . 2 ¬ 1o ≈ suc 1o
4 ensn1g 6899 . 2 (𝐴𝑉 → {𝐴} ≈ 1o)
5 df-2o 6513 . . . . 5 2o = suc 1o
65eqcomi 2210 . . . 4 suc 1o = 2o
76breq2i 4056 . . 3 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 6882 . . . . 5 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 6886 . . . . . 6 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 115 . . . . 5 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 121 . . . 4 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 634 . . 3 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 680 . 2 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 65 1 (𝐴𝑉 → ¬ {𝐴} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2177  {csn 3635   class class class wbr 4048  suc csuc 4417  ωcom 4643  1oc1o 6505  2oc2o 6506  cen 6835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator