ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2og GIF version

Theorem snnen2og 6872
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6873. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2og (𝐴𝑉 → ¬ {𝐴} ≈ 2o)

Proof of Theorem snnen2og
StepHypRef Expression
1 1onn 6534 . . 3 1o ∈ ω
2 php5 6871 . . 3 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . 2 ¬ 1o ≈ suc 1o
4 ensn1g 6810 . 2 (𝐴𝑉 → {𝐴} ≈ 1o)
5 df-2o 6431 . . . . 5 2o = suc 1o
65eqcomi 2191 . . . 4 suc 1o = 2o
76breq2i 4023 . . 3 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 6793 . . . . 5 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 6797 . . . . . 6 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 115 . . . . 5 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 121 . . . 4 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 634 . . 3 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 679 . 2 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 65 1 (𝐴𝑉 → ¬ {𝐴} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2158  {csn 3604   class class class wbr 4015  suc csuc 4377  ωcom 4601  1oc1o 6423  2oc2o 6424  cen 6751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1o 6430  df-2o 6431  df-er 6548  df-en 6754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator