![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snnen2og | GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6916. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
snnen2og | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6573 | . . 3 ⊢ 1o ∈ ω | |
2 | php5 6914 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
4 | ensn1g 6851 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
5 | df-2o 6470 | . . . . 5 ⊢ 2o = suc 1o | |
6 | 5 | eqcomi 2197 | . . . 4 ⊢ suc 1o = 2o |
7 | 6 | breq2i 4037 | . . 3 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
8 | ensymb 6834 | . . . . 5 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
9 | entr 6838 | . . . . . 6 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
10 | 9 | ex 115 | . . . . 5 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
11 | 8, 10 | sylbi 121 | . . . 4 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
12 | 11 | con3rr3 634 | . . 3 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
13 | 7, 12 | sylnbi 679 | . 2 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
14 | 3, 4, 13 | mpsyl 65 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2164 {csn 3618 class class class wbr 4029 suc csuc 4396 ωcom 4622 1oc1o 6462 2oc2o 6463 ≈ cen 6792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1o 6469 df-2o 6470 df-er 6587 df-en 6795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |