ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2og GIF version

Theorem snnen2og 7008
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 7009. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2og (𝐴𝑉 → ¬ {𝐴} ≈ 2o)

Proof of Theorem snnen2og
StepHypRef Expression
1 1onn 6656 . . 3 1o ∈ ω
2 php5 7007 . . 3 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . 2 ¬ 1o ≈ suc 1o
4 ensn1g 6939 . 2 (𝐴𝑉 → {𝐴} ≈ 1o)
5 df-2o 6553 . . . . 5 2o = suc 1o
65eqcomi 2233 . . . 4 suc 1o = 2o
76breq2i 4090 . . 3 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 6922 . . . . 5 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 6926 . . . . . 6 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 115 . . . . 5 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 121 . . . 4 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 636 . . 3 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 682 . 2 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 65 1 (𝐴𝑉 → ¬ {𝐴} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2200  {csn 3666   class class class wbr 4082  suc csuc 4453  ωcom 4679  1oc1o 6545  2oc2o 6546  cen 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator