Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snnen2og | GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6826. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
snnen2og | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6488 | . . 3 ⊢ 1o ∈ ω | |
2 | php5 6824 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
4 | ensn1g 6763 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
5 | df-2o 6385 | . . . . 5 ⊢ 2o = suc 1o | |
6 | 5 | eqcomi 2169 | . . . 4 ⊢ suc 1o = 2o |
7 | 6 | breq2i 3990 | . . 3 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
8 | ensymb 6746 | . . . . 5 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
9 | entr 6750 | . . . . . 6 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
10 | 9 | ex 114 | . . . . 5 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
11 | 8, 10 | sylbi 120 | . . . 4 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
12 | 11 | con3rr3 623 | . . 3 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
13 | 7, 12 | sylnbi 668 | . 2 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
14 | 3, 4, 13 | mpsyl 65 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 {csn 3576 class class class wbr 3982 suc csuc 4343 ωcom 4567 1oc1o 6377 2oc2o 6378 ≈ cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |