Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snnen2og | GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6802. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
snnen2og | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6464 | . . 3 ⊢ 1o ∈ ω | |
2 | php5 6800 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
4 | ensn1g 6739 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
5 | df-2o 6361 | . . . . 5 ⊢ 2o = suc 1o | |
6 | 5 | eqcomi 2161 | . . . 4 ⊢ suc 1o = 2o |
7 | 6 | breq2i 3973 | . . 3 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
8 | ensymb 6722 | . . . . 5 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
9 | entr 6726 | . . . . . 6 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
10 | 9 | ex 114 | . . . . 5 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
11 | 8, 10 | sylbi 120 | . . . 4 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
12 | 11 | con3rr3 623 | . . 3 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
13 | 7, 12 | sylnbi 668 | . 2 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
14 | 3, 4, 13 | mpsyl 65 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2128 {csn 3560 class class class wbr 3965 suc csuc 4325 ωcom 4548 1oc1o 6353 2oc2o 6354 ≈ cen 6680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-1o 6360 df-2o 6361 df-er 6477 df-en 6683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |