| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > condcOLD | GIF version | ||
| Description: Obsolete proof of condc 854 as of 18-Nov-2023. (Contributed by Jim Kingdon, 13-Mar-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| condcOLD | ⊢ (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
| 3 | 2 | a1d 22 | . . 3 ⊢ (𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑))) | 
| 4 | pm2.27 40 | . . . 4 ⊢ (¬ 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → ¬ 𝜓)) | |
| 5 | ax-in2 616 | . . . 4 ⊢ (¬ 𝜓 → (𝜓 → 𝜑)) | |
| 6 | 4, 5 | syl6 33 | . . 3 ⊢ (¬ 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑))) | 
| 7 | 3, 6 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑))) | 
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |