ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.18dc GIF version

Theorem pm2.18dc 850
Description: Proof by contradiction for a decidable proposition. Based on Theorem *2.18 of [WhiteheadRussell] p. 103 (also called Clavius law). Intuitionistically it requires a decidability assumption, but compare with pm2.01 611 which does not. (Contributed by Jim Kingdon, 24-Mar-2018.)
Assertion
Ref Expression
pm2.18dc (DECID 𝜑 → ((¬ 𝜑𝜑) → 𝜑))

Proof of Theorem pm2.18dc
StepHypRef Expression
1 pm2.21 612 . . . 4 𝜑 → (𝜑 → ¬ (¬ 𝜑𝜑)))
21a2i 11 . . 3 ((¬ 𝜑𝜑) → (¬ 𝜑 → ¬ (¬ 𝜑𝜑)))
3 condc 848 . . 3 (DECID 𝜑 → ((¬ 𝜑 → ¬ (¬ 𝜑𝜑)) → ((¬ 𝜑𝜑) → 𝜑)))
42, 3syl5 32 . 2 (DECID 𝜑 → ((¬ 𝜑𝜑) → ((¬ 𝜑𝜑) → 𝜑)))
54pm2.43d 50 1 (DECID 𝜑 → ((¬ 𝜑𝜑) → 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  pm4.81dc  903
  Copyright terms: Public domain W3C validator