| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | GIF version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | anim12i 338 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 823 xoranor 1419 19.41h 1731 sbimi 1810 equs5e 1841 exdistrfor 1846 equs45f 1848 sbidm 1897 eu3h 2123 eupickb 2159 2exeu 2170 darii 2178 festino 2184 baroco 2185 r19.27v 2658 r19.27av 2666 rspc2ev 2922 reu3 2993 difdif 3329 ssddif 3438 inssdif 3440 difin 3441 difindiss 3458 indifdir 3460 difrab 3478 iundif2ss 4031 trssord 4471 ordsuc 4655 find 4691 imainss 5144 dffun5r 5330 fof 5550 f1ocnv 5587 fv3 5652 relelfvdm 5661 funimass4 5686 fvelimab 5692 funconstss 5755 dff2 5781 dffo5 5786 dff1o6 5906 oprabid 6039 ssoprab2i 6099 uchoice 6289 releldm2 6337 ixpf 6875 recexgt0sr 7968 map2psrprg 8000 lediv2a 9050 lbreu 9100 elfzp12 10303 fihashf1rn 11018 ccatsymb 11145 swrdpfx 11247 pfxpfx 11248 pfxccatin12 11273 cau3lem 11633 fsumcl2lem 11917 dvdsnegb 12327 dvds2add 12344 dvds2sub 12345 ndvdssub 12449 gcd2n0cl 12498 divgcdcoprmex 12632 cncongr1 12633 ctinfom 13007 qusecsub 13876 istopfin 14682 toponcom 14709 cnptoprest 14921 dvmptfsum 15407 elply2 15417 uspgr2wlkeqi 16088 |
| Copyright terms: Public domain | W3C validator |