| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | GIF version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | anim12i 338 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 822 xoranor 1399 19.41h 1711 sbimi 1790 equs5e 1821 exdistrfor 1826 equs45f 1828 sbidm 1877 eu3h 2103 eupickb 2139 2exeu 2150 darii 2158 festino 2164 baroco 2165 r19.27v 2638 r19.27av 2646 rspc2ev 2902 reu3 2973 difdif 3309 ssddif 3418 inssdif 3420 difin 3421 difindiss 3438 indifdir 3440 difrab 3458 iundif2ss 4010 trssord 4448 ordsuc 4632 find 4668 imainss 5120 dffun5r 5306 fof 5524 f1ocnv 5561 fv3 5626 relelfvdm 5635 funimass4 5657 fvelimab 5663 funconstss 5726 dff2 5752 dffo5 5757 dff1o6 5873 oprabid 6006 ssoprab2i 6064 uchoice 6253 releldm2 6301 ixpf 6837 recexgt0sr 7928 map2psrprg 7960 lediv2a 9010 lbreu 9060 elfzp12 10263 fihashf1rn 10977 ccatsymb 11103 swrdpfx 11205 pfxpfx 11206 pfxccatin12 11231 cau3lem 11591 fsumcl2lem 11875 dvdsnegb 12285 dvds2add 12302 dvds2sub 12303 ndvdssub 12407 gcd2n0cl 12456 divgcdcoprmex 12590 cncongr1 12591 ctinfom 12965 qusecsub 13834 istopfin 14639 toponcom 14666 cnptoprest 14878 dvmptfsum 15364 elply2 15374 |
| Copyright terms: Public domain | W3C validator |