Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim2i | GIF version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | anim12i 336 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: sylanl2 401 sylanr2 403 andi 813 pm4.55dc 933 xoranor 1372 19.41h 1678 sbimi 1757 equs5e 1788 exdistrfor 1793 equs45f 1795 sbidm 1844 eu3h 2064 eupickb 2100 2exeu 2111 darii 2119 festino 2125 baroco 2126 r19.27v 2597 r19.27av 2605 rspc2ev 2849 reu3 2920 difdif 3252 ssddif 3361 inssdif 3363 difin 3364 difindiss 3381 indifdir 3383 difrab 3401 iundif2ss 3938 trssord 4365 ordsuc 4547 find 4583 imainss 5026 dffun5r 5210 fof 5420 f1ocnv 5455 fv3 5519 relelfvdm 5528 funimass4 5547 fvelimab 5552 funconstss 5614 dff2 5640 dffo5 5645 dff1o6 5755 oprabid 5885 ssoprab2i 5942 releldm2 6164 ixpf 6698 recexgt0sr 7735 map2psrprg 7767 lediv2a 8811 lbreu 8861 elfzp12 10055 focdmex 10721 fihashf1rn 10723 cau3lem 11078 fsumcl2lem 11361 dvdsnegb 11770 dvds2add 11787 dvds2sub 11788 ndvdssub 11889 gcd2n0cl 11924 divgcdcoprmex 12056 cncongr1 12057 ctinfom 12383 istopfin 12792 toponcom 12819 cnptoprest 13033 |
Copyright terms: Public domain | W3C validator |