![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim2i | GIF version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | anim12i 338 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: sylanl2 403 sylanr2 405 andi 819 xoranor 1388 19.41h 1696 sbimi 1775 equs5e 1806 exdistrfor 1811 equs45f 1813 sbidm 1862 eu3h 2087 eupickb 2123 2exeu 2134 darii 2142 festino 2148 baroco 2149 r19.27v 2621 r19.27av 2629 rspc2ev 2880 reu3 2951 difdif 3285 ssddif 3394 inssdif 3396 difin 3397 difindiss 3414 indifdir 3416 difrab 3434 iundif2ss 3979 trssord 4412 ordsuc 4596 find 4632 imainss 5082 dffun5r 5267 fof 5477 f1ocnv 5514 fv3 5578 relelfvdm 5587 funimass4 5608 fvelimab 5614 funconstss 5677 dff2 5703 dffo5 5708 dff1o6 5820 oprabid 5951 ssoprab2i 6008 uchoice 6192 releldm2 6240 ixpf 6776 recexgt0sr 7835 map2psrprg 7867 lediv2a 8916 lbreu 8966 elfzp12 10168 fihashf1rn 10862 cau3lem 11261 fsumcl2lem 11544 dvdsnegb 11954 dvds2add 11971 dvds2sub 11972 ndvdssub 12074 gcd2n0cl 12109 divgcdcoprmex 12243 cncongr1 12244 ctinfom 12588 qusecsub 13404 istopfin 14179 toponcom 14206 cnptoprest 14418 dvmptfsum 14904 elply2 14914 |
Copyright terms: Public domain | W3C validator |