| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | GIF version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | anim12i 338 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 820 xoranor 1397 19.41h 1709 sbimi 1788 equs5e 1819 exdistrfor 1824 equs45f 1826 sbidm 1875 eu3h 2100 eupickb 2136 2exeu 2147 darii 2155 festino 2161 baroco 2162 r19.27v 2634 r19.27av 2642 rspc2ev 2893 reu3 2964 difdif 3299 ssddif 3408 inssdif 3410 difin 3411 difindiss 3428 indifdir 3430 difrab 3448 iundif2ss 3995 trssord 4431 ordsuc 4615 find 4651 imainss 5103 dffun5r 5288 fof 5505 f1ocnv 5542 fv3 5606 relelfvdm 5615 funimass4 5636 fvelimab 5642 funconstss 5705 dff2 5731 dffo5 5736 dff1o6 5852 oprabid 5983 ssoprab2i 6041 uchoice 6230 releldm2 6278 ixpf 6814 recexgt0sr 7893 map2psrprg 7925 lediv2a 8975 lbreu 9025 elfzp12 10228 fihashf1rn 10940 ccatsymb 11066 swrdpfx 11166 pfxpfx 11167 cau3lem 11469 fsumcl2lem 11753 dvdsnegb 12163 dvds2add 12180 dvds2sub 12181 ndvdssub 12285 gcd2n0cl 12334 divgcdcoprmex 12468 cncongr1 12469 ctinfom 12843 qusecsub 13711 istopfin 14516 toponcom 14543 cnptoprest 14755 dvmptfsum 15241 elply2 15251 |
| Copyright terms: Public domain | W3C validator |