![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim2i | GIF version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | anim12i 338 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: sylanl2 403 sylanr2 405 andi 819 xoranor 1388 19.41h 1696 sbimi 1775 equs5e 1806 exdistrfor 1811 equs45f 1813 sbidm 1862 eu3h 2087 eupickb 2123 2exeu 2134 darii 2142 festino 2148 baroco 2149 r19.27v 2621 r19.27av 2629 rspc2ev 2879 reu3 2950 difdif 3284 ssddif 3393 inssdif 3395 difin 3396 difindiss 3413 indifdir 3415 difrab 3433 iundif2ss 3978 trssord 4411 ordsuc 4595 find 4631 imainss 5081 dffun5r 5266 fof 5476 f1ocnv 5513 fv3 5577 relelfvdm 5586 funimass4 5607 fvelimab 5613 funconstss 5676 dff2 5702 dffo5 5707 dff1o6 5819 oprabid 5950 ssoprab2i 6007 uchoice 6190 releldm2 6238 ixpf 6774 recexgt0sr 7833 map2psrprg 7865 lediv2a 8914 lbreu 8964 elfzp12 10165 fihashf1rn 10859 cau3lem 11258 fsumcl2lem 11541 dvdsnegb 11951 dvds2add 11968 dvds2sub 11969 ndvdssub 12071 gcd2n0cl 12106 divgcdcoprmex 12240 cncongr1 12241 ctinfom 12585 qusecsub 13401 istopfin 14168 toponcom 14195 cnptoprest 14407 elply2 14881 |
Copyright terms: Public domain | W3C validator |