![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim2i | GIF version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | anim12i 334 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: sylanl2 398 sylanr2 400 andi 773 pm4.55dc 890 xoranor 1323 19.41h 1631 sbimi 1705 equs5e 1734 exdistrfor 1739 equs45f 1741 sbidm 1790 eu3h 2005 eupickb 2041 2exeu 2052 darii 2060 festino 2066 baroco 2067 r19.27v 2518 r19.27av 2526 rspc2ev 2758 reu3 2827 difdif 3148 ssddif 3257 inssdif 3259 difin 3260 difindiss 3277 indifdir 3279 difrab 3297 iundif2ss 3825 trssord 4240 ordsuc 4416 find 4451 imainss 4890 dffun5r 5071 fof 5281 f1ocnv 5314 fv3 5376 relelfvdm 5385 funimass4 5404 fvelimab 5409 funconstss 5470 dff2 5496 dffo5 5501 dff1o6 5609 oprabid 5735 ssoprab2i 5792 releldm2 6013 ixpf 6544 recexgt0sr 7469 lediv2a 8511 lbreu 8561 elfzp12 9720 focdmex 10374 fihashf1rn 10376 cau3lem 10726 fsumcl2lem 11006 dvdsnegb 11305 dvds2add 11322 dvds2sub 11323 ndvdssub 11422 gcd2n0cl 11453 divgcdcoprmex 11576 cncongr1 11577 ctinfom 11733 istopfin 11949 toponcom 11976 cnptoprest 12189 |
Copyright terms: Public domain | W3C validator |