Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim2i | GIF version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
anim2i | ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | anim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | anim12i 336 | 1 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: sylanl2 401 sylanr2 403 andi 808 pm4.55dc 928 xoranor 1367 19.41h 1673 sbimi 1752 equs5e 1783 exdistrfor 1788 equs45f 1790 sbidm 1839 eu3h 2059 eupickb 2095 2exeu 2106 darii 2114 festino 2120 baroco 2121 r19.27v 2593 r19.27av 2601 rspc2ev 2845 reu3 2916 difdif 3247 ssddif 3356 inssdif 3358 difin 3359 difindiss 3376 indifdir 3378 difrab 3396 iundif2ss 3931 trssord 4358 ordsuc 4540 find 4576 imainss 5019 dffun5r 5200 fof 5410 f1ocnv 5445 fv3 5509 relelfvdm 5518 funimass4 5537 fvelimab 5542 funconstss 5603 dff2 5629 dffo5 5634 dff1o6 5744 oprabid 5874 ssoprab2i 5931 releldm2 6153 ixpf 6686 recexgt0sr 7714 map2psrprg 7746 lediv2a 8790 lbreu 8840 elfzp12 10034 focdmex 10700 fihashf1rn 10702 cau3lem 11056 fsumcl2lem 11339 dvdsnegb 11748 dvds2add 11765 dvds2sub 11766 ndvdssub 11867 gcd2n0cl 11902 divgcdcoprmex 12034 cncongr1 12035 ctinfom 12361 istopfin 12638 toponcom 12665 cnptoprest 12879 |
Copyright terms: Public domain | W3C validator |