Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-0 | GIF version |
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
df-0 | ⊢ 0 = 〈0R, 0R〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc0 7733 | . 2 class 0 | |
2 | c0r 7219 | . . 3 class 0R | |
3 | 2, 2 | cop 3563 | . 2 class 〈0R, 0R〉 |
4 | 1, 3 | wceq 1335 | 1 wff 0 = 〈0R, 0R〉 |
Colors of variables: wff set class |
This definition is referenced by: pitoregt0 7770 axi2m1 7796 ax0lt1 7797 ax0id 7799 axrnegex 7800 axprecex 7801 axpre-mulgt0 7808 axcaucvglemres 7820 |
Copyright terms: Public domain | W3C validator |