| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-0 | GIF version | ||
| Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| df-0 | ⊢ 0 = 〈0R, 0R〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc0 7987 | . 2 class 0 | |
| 2 | c0r 7473 | . . 3 class 0R | |
| 3 | 2, 2 | cop 3669 | . 2 class 〈0R, 0R〉 |
| 4 | 1, 3 | wceq 1395 | 1 wff 0 = 〈0R, 0R〉 |
| Colors of variables: wff set class |
| This definition is referenced by: pitoregt0 8024 axi2m1 8050 ax0lt1 8051 ax0id 8053 axrnegex 8054 axprecex 8055 axpre-mulgt0 8062 axcaucvglemres 8074 |
| Copyright terms: Public domain | W3C validator |