| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-mulgt0 | GIF version | ||
| Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 8104. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-mulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 8003 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 8003 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | breq2 4086 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ 〈𝑥, 0R〉 ↔ 0 <ℝ 𝐴)) | |
| 4 | 3 | anbi1d 465 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉))) |
| 5 | oveq1 6001 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = (𝐴 · 〈𝑦, 0R〉)) | |
| 6 | 5 | breq2d 4094 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 〈𝑦, 0R〉))) |
| 7 | 4, 6 | imbi12d 234 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)))) |
| 8 | breq2 4086 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ 〈𝑦, 0R〉 ↔ 0 <ℝ 𝐵)) | |
| 9 | 8 | anbi2d 464 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵))) |
| 10 | oveq2 6002 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 · 〈𝑦, 0R〉) = (𝐴 · 𝐵)) | |
| 11 | 10 | breq2d 4094 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ (𝐴 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 𝐵))) |
| 12 | 9, 11 | imbi12d 234 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵)))) |
| 13 | df-0 7994 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
| 14 | 13 | breq1i 4089 | . . . . 5 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑥, 0R〉) |
| 15 | ltresr 8014 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) | |
| 16 | 14, 15 | bitri 184 | . . . 4 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) |
| 17 | 13 | breq1i 4089 | . . . . 5 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑦, 0R〉) |
| 18 | ltresr 8014 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) | |
| 19 | 17, 18 | bitri 184 | . . . 4 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) |
| 20 | mulgt0sr 7953 | . . . 4 ⊢ ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦)) | |
| 21 | 16, 19, 20 | syl2anb 291 | . . 3 ⊢ ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0R <R (𝑥 ·R 𝑦)) |
| 22 | 13 | a1i 9 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 0 = 〈0R, 0R〉) |
| 23 | mulresr 8013 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = 〈(𝑥 ·R 𝑦), 0R〉) | |
| 24 | 22, 23 | breq12d 4095 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉)) |
| 25 | ltresr 8014 | . . . 4 ⊢ (〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉 ↔ 0R <R (𝑥 ·R 𝑦)) | |
| 26 | 24, 25 | bitrdi 196 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0R <R (𝑥 ·R 𝑦))) |
| 27 | 21, 26 | imbitrrid 156 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉))) |
| 28 | 1, 2, 7, 12, 27 | 2gencl 2833 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 class class class wbr 4082 (class class class)co 5994 Rcnr 7472 0Rc0r 7473 ·R cmr 7477 <R cltr 7478 ℝcr 7986 0cc0 7987 <ℝ cltrr 7991 · cmul 7992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-2o 6553 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-enq0 7599 df-nq0 7600 df-0nq0 7601 df-plq0 7602 df-mq0 7603 df-inp 7641 df-i1p 7642 df-iplp 7643 df-imp 7644 df-iltp 7645 df-enr 7901 df-nr 7902 df-plr 7903 df-mr 7904 df-ltr 7905 df-0r 7906 df-m1r 7908 df-c 7993 df-0 7994 df-r 7997 df-mul 7999 df-lt 8000 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |