![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axpre-mulgt0 | GIF version |
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7989. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-mulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7888 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 7888 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | breq2 4033 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ 〈𝑥, 0R〉 ↔ 0 <ℝ 𝐴)) | |
4 | 3 | anbi1d 465 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉))) |
5 | oveq1 5925 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = (𝐴 · 〈𝑦, 0R〉)) | |
6 | 5 | breq2d 4041 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 〈𝑦, 0R〉))) |
7 | 4, 6 | imbi12d 234 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)))) |
8 | breq2 4033 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ 〈𝑦, 0R〉 ↔ 0 <ℝ 𝐵)) | |
9 | 8 | anbi2d 464 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵))) |
10 | oveq2 5926 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 · 〈𝑦, 0R〉) = (𝐴 · 𝐵)) | |
11 | 10 | breq2d 4041 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (0 <ℝ (𝐴 · 〈𝑦, 0R〉) ↔ 0 <ℝ (𝐴 · 𝐵))) |
12 | 9, 11 | imbi12d 234 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((0 <ℝ 𝐴 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (𝐴 · 〈𝑦, 0R〉)) ↔ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵)))) |
13 | df-0 7879 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
14 | 13 | breq1i 4036 | . . . . 5 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑥, 0R〉) |
15 | ltresr 7899 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) | |
16 | 14, 15 | bitri 184 | . . . 4 ⊢ (0 <ℝ 〈𝑥, 0R〉 ↔ 0R <R 𝑥) |
17 | 13 | breq1i 4036 | . . . . 5 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 〈0R, 0R〉 <ℝ 〈𝑦, 0R〉) |
18 | ltresr 7899 | . . . . 5 ⊢ (〈0R, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) | |
19 | 17, 18 | bitri 184 | . . . 4 ⊢ (0 <ℝ 〈𝑦, 0R〉 ↔ 0R <R 𝑦) |
20 | mulgt0sr 7838 | . . . 4 ⊢ ((0R <R 𝑥 ∧ 0R <R 𝑦) → 0R <R (𝑥 ·R 𝑦)) | |
21 | 16, 19, 20 | syl2anb 291 | . . 3 ⊢ ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0R <R (𝑥 ·R 𝑦)) |
22 | 13 | a1i 9 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 0 = 〈0R, 0R〉) |
23 | mulresr 7898 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 · 〈𝑦, 0R〉) = 〈(𝑥 ·R 𝑦), 0R〉) | |
24 | 22, 23 | breq12d 4042 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉)) |
25 | ltresr 7899 | . . . 4 ⊢ (〈0R, 0R〉 <ℝ 〈(𝑥 ·R 𝑦), 0R〉 ↔ 0R <R (𝑥 ·R 𝑦)) | |
26 | 24, 25 | bitrdi 196 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉) ↔ 0R <R (𝑥 ·R 𝑦))) |
27 | 21, 26 | imbitrrid 156 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → ((0 <ℝ 〈𝑥, 0R〉 ∧ 0 <ℝ 〈𝑦, 0R〉) → 0 <ℝ (〈𝑥, 0R〉 · 〈𝑦, 0R〉))) |
28 | 1, 2, 7, 12, 27 | 2gencl 2793 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 (class class class)co 5918 Rcnr 7357 0Rc0r 7358 ·R cmr 7362 <R cltr 7363 ℝcr 7871 0cc0 7872 <ℝ cltrr 7876 · cmul 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-2o 6470 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 df-enq0 7484 df-nq0 7485 df-0nq0 7486 df-plq0 7487 df-mq0 7488 df-inp 7526 df-i1p 7527 df-iplp 7528 df-imp 7529 df-iltp 7530 df-enr 7786 df-nr 7787 df-plr 7788 df-mr 7789 df-ltr 7790 df-0r 7791 df-m1r 7793 df-c 7878 df-0 7879 df-r 7882 df-mul 7884 df-lt 7885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |