Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axrnegex | GIF version |
Description: Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7841. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axrnegex | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal2 7750 | . . . . 5 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | |
2 | 1 | simplbi 272 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1st ‘𝐴) ∈ R) |
3 | m1r 7672 | . . . 4 ⊢ -1R ∈ R | |
4 | mulclsr 7674 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ -1R ∈ R) → ((1st ‘𝐴) ·R -1R) ∈ R) | |
5 | 2, 3, 4 | sylancl 410 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1st ‘𝐴) ·R -1R) ∈ R) |
6 | opelreal 7747 | . . 3 ⊢ (〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ↔ ((1st ‘𝐴) ·R -1R) ∈ R) | |
7 | 5, 6 | sylibr 133 | . 2 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ) |
8 | 1 | simprbi 273 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
9 | 8 | oveq1d 5839 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) |
10 | addresr 7757 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ ((1st ‘𝐴) ·R -1R) ∈ R) → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) | |
11 | 2, 5, 10 | syl2anc 409 | . . 3 ⊢ (𝐴 ∈ ℝ → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) |
12 | pn0sr 7691 | . . . . . 6 ⊢ ((1st ‘𝐴) ∈ R → ((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)) = 0R) | |
13 | 12 | opeq1d 3747 | . . . . 5 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 〈0R, 0R〉) |
14 | df-0 7739 | . . . . 5 ⊢ 0 = 〈0R, 0R〉 | |
15 | 13, 14 | eqtr4di 2208 | . . . 4 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
16 | 2, 15 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
17 | 9, 11, 16 | 3eqtrd 2194 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) |
18 | oveq2 5832 | . . . 4 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → (𝐴 + 𝑥) = (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) | |
19 | 18 | eqeq1d 2166 | . . 3 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0)) |
20 | 19 | rspcev 2816 | . 2 ⊢ ((〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ∧ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
21 | 7, 17, 20 | syl2anc 409 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 〈cop 3563 ‘cfv 5170 (class class class)co 5824 1st c1st 6086 Rcnr 7217 0Rc0r 7218 -1Rcm1r 7220 +R cplr 7221 ·R cmr 7222 ℝcr 7731 0cc0 7732 + caddc 7735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-1o 6363 df-2o 6364 df-oadd 6367 df-omul 6368 df-er 6480 df-ec 6482 df-qs 6486 df-ni 7224 df-pli 7225 df-mi 7226 df-lti 7227 df-plpq 7264 df-mpq 7265 df-enq 7267 df-nqqs 7268 df-plqqs 7269 df-mqqs 7270 df-1nqqs 7271 df-rq 7272 df-ltnqqs 7273 df-enq0 7344 df-nq0 7345 df-0nq0 7346 df-plq0 7347 df-mq0 7348 df-inp 7386 df-i1p 7387 df-iplp 7388 df-imp 7389 df-enr 7646 df-nr 7647 df-plr 7648 df-mr 7649 df-0r 7651 df-1r 7652 df-m1r 7653 df-c 7738 df-0 7739 df-r 7742 df-add 7743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |