ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axrnegex GIF version

Theorem axrnegex 7939
Description: Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7981. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrnegex (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrnegex
StepHypRef Expression
1 elreal2 7890 . . . . 5 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
21simplbi 274 . . . 4 (𝐴 ∈ ℝ → (1st𝐴) ∈ R)
3 m1r 7812 . . . 4 -1RR
4 mulclsr 7814 . . . 4 (((1st𝐴) ∈ R ∧ -1RR) → ((1st𝐴) ·R -1R) ∈ R)
52, 3, 4sylancl 413 . . 3 (𝐴 ∈ ℝ → ((1st𝐴) ·R -1R) ∈ R)
6 opelreal 7887 . . 3 (⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ ↔ ((1st𝐴) ·R -1R) ∈ R)
75, 6sylibr 134 . 2 (𝐴 ∈ ℝ → ⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ)
81simprbi 275 . . . 4 (𝐴 ∈ ℝ → 𝐴 = ⟨(1st𝐴), 0R⟩)
98oveq1d 5933 . . 3 (𝐴 ∈ ℝ → (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩))
10 addresr 7897 . . . 4 (((1st𝐴) ∈ R ∧ ((1st𝐴) ·R -1R) ∈ R) → (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩) = ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩)
112, 5, 10syl2anc 411 . . 3 (𝐴 ∈ ℝ → (⟨(1st𝐴), 0R⟩ + ⟨((1st𝐴) ·R -1R), 0R⟩) = ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩)
12 pn0sr 7831 . . . . . 6 ((1st𝐴) ∈ R → ((1st𝐴) +R ((1st𝐴) ·R -1R)) = 0R)
1312opeq1d 3810 . . . . 5 ((1st𝐴) ∈ R → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = ⟨0R, 0R⟩)
14 df-0 7879 . . . . 5 0 = ⟨0R, 0R
1513, 14eqtr4di 2244 . . . 4 ((1st𝐴) ∈ R → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = 0)
162, 15syl 14 . . 3 (𝐴 ∈ ℝ → ⟨((1st𝐴) +R ((1st𝐴) ·R -1R)), 0R⟩ = 0)
179, 11, 163eqtrd 2230 . 2 (𝐴 ∈ ℝ → (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0)
18 oveq2 5926 . . . 4 (𝑥 = ⟨((1st𝐴) ·R -1R), 0R⟩ → (𝐴 + 𝑥) = (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩))
1918eqeq1d 2202 . . 3 (𝑥 = ⟨((1st𝐴) ·R -1R), 0R⟩ → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0))
2019rspcev 2864 . 2 ((⟨((1st𝐴) ·R -1R), 0R⟩ ∈ ℝ ∧ (𝐴 + ⟨((1st𝐴) ·R -1R), 0R⟩) = 0) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
217, 17, 20syl2anc 411 1 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wrex 2473  cop 3621  cfv 5254  (class class class)co 5918  1st c1st 6191  Rcnr 7357  0Rc0r 7358  -1Rcm1r 7360   +R cplr 7361   ·R cmr 7362  cr 7871  0cc0 7872   + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529  df-enr 7786  df-nr 7787  df-plr 7788  df-mr 7789  df-0r 7791  df-1r 7792  df-m1r 7793  df-c 7878  df-0 7879  df-r 7882  df-add 7883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator