| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axrnegex | GIF version | ||
| Description: Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 8007. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axrnegex | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal2 7916 | . . . . 5 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | |
| 2 | 1 | simplbi 274 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1st ‘𝐴) ∈ R) |
| 3 | m1r 7838 | . . . 4 ⊢ -1R ∈ R | |
| 4 | mulclsr 7840 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ -1R ∈ R) → ((1st ‘𝐴) ·R -1R) ∈ R) | |
| 5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1st ‘𝐴) ·R -1R) ∈ R) |
| 6 | opelreal 7913 | . . 3 ⊢ (〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ↔ ((1st ‘𝐴) ·R -1R) ∈ R) | |
| 7 | 5, 6 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ) |
| 8 | 1 | simprbi 275 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
| 9 | 8 | oveq1d 5940 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) |
| 10 | addresr 7923 | . . . 4 ⊢ (((1st ‘𝐴) ∈ R ∧ ((1st ‘𝐴) ·R -1R) ∈ R) → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) | |
| 11 | 2, 5, 10 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ ℝ → (〈(1st ‘𝐴), 0R〉 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉) |
| 12 | pn0sr 7857 | . . . . . 6 ⊢ ((1st ‘𝐴) ∈ R → ((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)) = 0R) | |
| 13 | 12 | opeq1d 3815 | . . . . 5 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 〈0R, 0R〉) |
| 14 | df-0 7905 | . . . . 5 ⊢ 0 = 〈0R, 0R〉 | |
| 15 | 13, 14 | eqtr4di 2247 | . . . 4 ⊢ ((1st ‘𝐴) ∈ R → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
| 16 | 2, 15 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → 〈((1st ‘𝐴) +R ((1st ‘𝐴) ·R -1R)), 0R〉 = 0) |
| 17 | 9, 11, 16 | 3eqtrd 2233 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) |
| 18 | oveq2 5933 | . . . 4 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → (𝐴 + 𝑥) = (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉)) | |
| 19 | 18 | eqeq1d 2205 | . . 3 ⊢ (𝑥 = 〈((1st ‘𝐴) ·R -1R), 0R〉 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0)) |
| 20 | 19 | rspcev 2868 | . 2 ⊢ ((〈((1st ‘𝐴) ·R -1R), 0R〉 ∈ ℝ ∧ (𝐴 + 〈((1st ‘𝐴) ·R -1R), 0R〉) = 0) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| 21 | 7, 17, 20 | syl2anc 411 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 〈cop 3626 ‘cfv 5259 (class class class)co 5925 1st c1st 6205 Rcnr 7383 0Rc0r 7384 -1Rcm1r 7386 +R cplr 7387 ·R cmr 7388 ℝcr 7897 0cc0 7898 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7390 df-pli 7391 df-mi 7392 df-lti 7393 df-plpq 7430 df-mpq 7431 df-enq 7433 df-nqqs 7434 df-plqqs 7435 df-mqqs 7436 df-1nqqs 7437 df-rq 7438 df-ltnqqs 7439 df-enq0 7510 df-nq0 7511 df-0nq0 7512 df-plq0 7513 df-mq0 7514 df-inp 7552 df-i1p 7553 df-iplp 7554 df-imp 7555 df-enr 7812 df-nr 7813 df-plr 7814 df-mr 7815 df-0r 7817 df-1r 7818 df-m1r 7819 df-c 7904 df-0 7905 df-r 7908 df-add 7909 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |