| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax0id | GIF version | ||
| Description: 0
is an identity element for real addition. Axiom for real and
complex numbers, derived from set theory. This construction-dependent
theorem should not be referenced directly; instead, use ax-0id 8115.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax0id | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 8013 | . 2 ⊢ ℂ = (R × R) | |
| 2 | oveq1 6014 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 + 0) = (𝐴 + 0)) | |
| 3 | id 19 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2244 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉 ↔ (𝐴 + 0) = 𝐴)) |
| 5 | 0r 7945 | . . . 4 ⊢ 0R ∈ R | |
| 6 | addcnsr 8029 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) | |
| 7 | 5, 5, 6 | mpanr12 439 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) |
| 8 | df-0 8014 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
| 9 | 8 | eqcomi 2233 | . . . . 5 ⊢ 〈0R, 0R〉 = 0 |
| 10 | 9 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈0R, 0R〉 = 0) |
| 11 | 10 | oveq2d 6023 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = (〈𝑥, 𝑦〉 + 0)) |
| 12 | 0idsr 7962 | . . . . 5 ⊢ (𝑥 ∈ R → (𝑥 +R 0R) = 𝑥) | |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 0R) = 𝑥) |
| 14 | 0idsr 7962 | . . . . 5 ⊢ (𝑦 ∈ R → (𝑦 +R 0R) = 𝑦) | |
| 15 | 14 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑦 +R 0R) = 𝑦) |
| 16 | 13, 15 | opeq12d 3865 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 0R), (𝑦 +R 0R)〉 = 〈𝑥, 𝑦〉) |
| 17 | 7, 11, 16 | 3eqtr3d 2270 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉) |
| 18 | 1, 4, 17 | optocl 4795 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 (class class class)co 6007 Rcnr 7492 0Rc0r 7493 +R cplr 7496 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-2o 6569 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 df-enq0 7619 df-nq0 7620 df-0nq0 7621 df-plq0 7622 df-mq0 7623 df-inp 7661 df-i1p 7662 df-iplp 7663 df-enr 7921 df-nr 7922 df-plr 7923 df-0r 7926 df-c 8013 df-0 8014 df-add 8018 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |