ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax0id GIF version

Theorem ax0id 8053
Description: 0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 8095.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
ax0id (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem ax0id
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7993 . 2 ℂ = (R × R)
2 oveq1 6001 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ + 0) = (𝐴 + 0))
3 id 19 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2244 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ + 0) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 + 0) = 𝐴))
5 0r 7925 . . . 4 0RR
6 addcnsr 8009 . . . 4 (((𝑥R𝑦R) ∧ (0RR ∧ 0RR)) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩)
75, 5, 6mpanr12 439 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩)
8 df-0 7994 . . . . . 6 0 = ⟨0R, 0R
98eqcomi 2233 . . . . 5 ⟨0R, 0R⟩ = 0
109a1i 9 . . . 4 ((𝑥R𝑦R) → ⟨0R, 0R⟩ = 0)
1110oveq2d 6010 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = (⟨𝑥, 𝑦⟩ + 0))
12 0idsr 7942 . . . . 5 (𝑥R → (𝑥 +R 0R) = 𝑥)
1312adantr 276 . . . 4 ((𝑥R𝑦R) → (𝑥 +R 0R) = 𝑥)
14 0idsr 7942 . . . . 5 (𝑦R → (𝑦 +R 0R) = 𝑦)
1514adantl 277 . . . 4 ((𝑥R𝑦R) → (𝑦 +R 0R) = 𝑦)
1613, 15opeq12d 3864 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩ = ⟨𝑥, 𝑦⟩)
177, 11, 163eqtr3d 2270 . 2 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + 0) = ⟨𝑥, 𝑦⟩)
181, 4, 17optocl 4792 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cop 3669  (class class class)co 5994  Rcnr 7472  0Rc0r 7473   +R cplr 7476  cc 7985  0cc0 7987   + caddc 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-i1p 7642  df-iplp 7643  df-enr 7901  df-nr 7902  df-plr 7903  df-0r 7906  df-c 7993  df-0 7994  df-add 7998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator