ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax0id GIF version

Theorem ax0id 7940
Description: 0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 7982.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
ax0id (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem ax0id
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7880 . 2 ℂ = (R × R)
2 oveq1 5926 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ + 0) = (𝐴 + 0))
3 id 19 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2208 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ + 0) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 + 0) = 𝐴))
5 0r 7812 . . . 4 0RR
6 addcnsr 7896 . . . 4 (((𝑥R𝑦R) ∧ (0RR ∧ 0RR)) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩)
75, 5, 6mpanr12 439 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩)
8 df-0 7881 . . . . . 6 0 = ⟨0R, 0R
98eqcomi 2197 . . . . 5 ⟨0R, 0R⟩ = 0
109a1i 9 . . . 4 ((𝑥R𝑦R) → ⟨0R, 0R⟩ = 0)
1110oveq2d 5935 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = (⟨𝑥, 𝑦⟩ + 0))
12 0idsr 7829 . . . . 5 (𝑥R → (𝑥 +R 0R) = 𝑥)
1312adantr 276 . . . 4 ((𝑥R𝑦R) → (𝑥 +R 0R) = 𝑥)
14 0idsr 7829 . . . . 5 (𝑦R → (𝑦 +R 0R) = 𝑦)
1514adantl 277 . . . 4 ((𝑥R𝑦R) → (𝑦 +R 0R) = 𝑦)
1613, 15opeq12d 3813 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩ = ⟨𝑥, 𝑦⟩)
177, 11, 163eqtr3d 2234 . 2 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + 0) = ⟨𝑥, 𝑦⟩)
181, 4, 17optocl 4736 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3622  (class class class)co 5919  Rcnr 7359  0Rc0r 7360   +R cplr 7363  cc 7872  0cc0 7874   + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-enr 7788  df-nr 7789  df-plr 7790  df-0r 7793  df-c 7880  df-0 7881  df-add 7885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator