| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax0id | GIF version | ||
| Description: 0
is an identity element for real addition. Axiom for real and
complex numbers, derived from set theory. This construction-dependent
theorem should not be referenced directly; instead, use ax-0id 8095.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax0id | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7993 | . 2 ⊢ ℂ = (R × R) | |
| 2 | oveq1 6001 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 + 0) = (𝐴 + 0)) | |
| 3 | id 19 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2244 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉 ↔ (𝐴 + 0) = 𝐴)) |
| 5 | 0r 7925 | . . . 4 ⊢ 0R ∈ R | |
| 6 | addcnsr 8009 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) | |
| 7 | 5, 5, 6 | mpanr12 439 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) |
| 8 | df-0 7994 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
| 9 | 8 | eqcomi 2233 | . . . . 5 ⊢ 〈0R, 0R〉 = 0 |
| 10 | 9 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈0R, 0R〉 = 0) |
| 11 | 10 | oveq2d 6010 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = (〈𝑥, 𝑦〉 + 0)) |
| 12 | 0idsr 7942 | . . . . 5 ⊢ (𝑥 ∈ R → (𝑥 +R 0R) = 𝑥) | |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 0R) = 𝑥) |
| 14 | 0idsr 7942 | . . . . 5 ⊢ (𝑦 ∈ R → (𝑦 +R 0R) = 𝑦) | |
| 15 | 14 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑦 +R 0R) = 𝑦) |
| 16 | 13, 15 | opeq12d 3864 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 0R), (𝑦 +R 0R)〉 = 〈𝑥, 𝑦〉) |
| 17 | 7, 11, 16 | 3eqtr3d 2270 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉) |
| 18 | 1, 4, 17 | optocl 4792 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 (class class class)co 5994 Rcnr 7472 0Rc0r 7473 +R cplr 7476 ℂcc 7985 0cc0 7987 + caddc 7990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-2o 6553 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-enq0 7599 df-nq0 7600 df-0nq0 7601 df-plq0 7602 df-mq0 7603 df-inp 7641 df-i1p 7642 df-iplp 7643 df-enr 7901 df-nr 7902 df-plr 7903 df-0r 7906 df-c 7993 df-0 7994 df-add 7998 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |