| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax0id | GIF version | ||
| Description: 0
is an identity element for real addition. Axiom for real and
complex numbers, derived from set theory. This construction-dependent
theorem should not be referenced directly; instead, use ax-0id 8040.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax0id | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7938 | . 2 ⊢ ℂ = (R × R) | |
| 2 | oveq1 5958 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 + 0) = (𝐴 + 0)) | |
| 3 | id 19 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2221 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉 ↔ (𝐴 + 0) = 𝐴)) |
| 5 | 0r 7870 | . . . 4 ⊢ 0R ∈ R | |
| 6 | addcnsr 7954 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) | |
| 7 | 5, 5, 6 | mpanr12 439 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) |
| 8 | df-0 7939 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
| 9 | 8 | eqcomi 2210 | . . . . 5 ⊢ 〈0R, 0R〉 = 0 |
| 10 | 9 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈0R, 0R〉 = 0) |
| 11 | 10 | oveq2d 5967 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = (〈𝑥, 𝑦〉 + 0)) |
| 12 | 0idsr 7887 | . . . . 5 ⊢ (𝑥 ∈ R → (𝑥 +R 0R) = 𝑥) | |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 0R) = 𝑥) |
| 14 | 0idsr 7887 | . . . . 5 ⊢ (𝑦 ∈ R → (𝑦 +R 0R) = 𝑦) | |
| 15 | 14 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑦 +R 0R) = 𝑦) |
| 16 | 13, 15 | opeq12d 3829 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 0R), (𝑦 +R 0R)〉 = 〈𝑥, 𝑦〉) |
| 17 | 7, 11, 16 | 3eqtr3d 2247 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉) |
| 18 | 1, 4, 17 | optocl 4755 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3637 (class class class)co 5951 Rcnr 7417 0Rc0r 7418 +R cplr 7421 ℂcc 7930 0cc0 7932 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-2o 6510 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-enq0 7544 df-nq0 7545 df-0nq0 7546 df-plq0 7547 df-mq0 7548 df-inp 7586 df-i1p 7587 df-iplp 7588 df-enr 7846 df-nr 7847 df-plr 7848 df-0r 7851 df-c 7938 df-0 7939 df-add 7943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |