ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax0id GIF version

Theorem ax0id 7879
Description: 0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 7921.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
ax0id (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem ax0id
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7819 . 2 ℂ = (R × R)
2 oveq1 5884 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ + 0) = (𝐴 + 0))
3 id 19 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2192 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ + 0) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 + 0) = 𝐴))
5 0r 7751 . . . 4 0RR
6 addcnsr 7835 . . . 4 (((𝑥R𝑦R) ∧ (0RR ∧ 0RR)) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩)
75, 5, 6mpanr12 439 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩)
8 df-0 7820 . . . . . 6 0 = ⟨0R, 0R
98eqcomi 2181 . . . . 5 ⟨0R, 0R⟩ = 0
109a1i 9 . . . 4 ((𝑥R𝑦R) → ⟨0R, 0R⟩ = 0)
1110oveq2d 5893 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + ⟨0R, 0R⟩) = (⟨𝑥, 𝑦⟩ + 0))
12 0idsr 7768 . . . . 5 (𝑥R → (𝑥 +R 0R) = 𝑥)
1312adantr 276 . . . 4 ((𝑥R𝑦R) → (𝑥 +R 0R) = 𝑥)
14 0idsr 7768 . . . . 5 (𝑦R → (𝑦 +R 0R) = 𝑦)
1514adantl 277 . . . 4 ((𝑥R𝑦R) → (𝑦 +R 0R) = 𝑦)
1613, 15opeq12d 3788 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 +R 0R), (𝑦 +R 0R)⟩ = ⟨𝑥, 𝑦⟩)
177, 11, 163eqtr3d 2218 . 2 ((𝑥R𝑦R) → (⟨𝑥, 𝑦⟩ + 0) = ⟨𝑥, 𝑦⟩)
181, 4, 17optocl 4704 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cop 3597  (class class class)co 5877  Rcnr 7298  0Rc0r 7299   +R cplr 7302  cc 7811  0cc0 7813   + caddc 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-i1p 7468  df-iplp 7469  df-enr 7727  df-nr 7728  df-plr 7729  df-0r 7732  df-c 7819  df-0 7820  df-add 7824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator