![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax0id | GIF version |
Description: 0
is an identity element for real addition. Axiom for real and
complex numbers, derived from set theory. This construction-dependent
theorem should not be referenced directly; instead, use ax-0id 7982.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax0id | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7880 | . 2 ⊢ ℂ = (R × R) | |
2 | oveq1 5926 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 + 0) = (𝐴 + 0)) | |
3 | id 19 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → 〈𝑥, 𝑦〉 = 𝐴) | |
4 | 2, 3 | eqeq12d 2208 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉 ↔ (𝐴 + 0) = 𝐴)) |
5 | 0r 7812 | . . . 4 ⊢ 0R ∈ R | |
6 | addcnsr 7896 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) | |
7 | 5, 5, 6 | mpanr12 439 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = 〈(𝑥 +R 0R), (𝑦 +R 0R)〉) |
8 | df-0 7881 | . . . . . 6 ⊢ 0 = 〈0R, 0R〉 | |
9 | 8 | eqcomi 2197 | . . . . 5 ⊢ 〈0R, 0R〉 = 0 |
10 | 9 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈0R, 0R〉 = 0) |
11 | 10 | oveq2d 5935 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 〈0R, 0R〉) = (〈𝑥, 𝑦〉 + 0)) |
12 | 0idsr 7829 | . . . . 5 ⊢ (𝑥 ∈ R → (𝑥 +R 0R) = 𝑥) | |
13 | 12 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 0R) = 𝑥) |
14 | 0idsr 7829 | . . . . 5 ⊢ (𝑦 ∈ R → (𝑦 +R 0R) = 𝑦) | |
15 | 14 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑦 +R 0R) = 𝑦) |
16 | 13, 15 | opeq12d 3813 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 0R), (𝑦 +R 0R)〉 = 〈𝑥, 𝑦〉) |
17 | 7, 11, 16 | 3eqtr3d 2234 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 𝑦〉 + 0) = 〈𝑥, 𝑦〉) |
18 | 1, 4, 17 | optocl 4736 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 〈cop 3622 (class class class)co 5919 Rcnr 7359 0Rc0r 7360 +R cplr 7363 ℂcc 7872 0cc0 7874 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-enr 7788 df-nr 7789 df-plr 7790 df-0r 7793 df-c 7880 df-0 7881 df-add 7885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |