ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex GIF version

Theorem axprecex 7688
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7730.

In treatments which assume excluded middle, the 0 < 𝐴 condition is generally replaced by 𝐴 ≠ 0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem axprecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7636 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 2422 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 183 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 breq2 3933 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐴))
5 oveq1 5781 . . . . . . 7 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2148 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76anbi2d 459 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
87rexbidv 2438 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
94, 8imbi12d 233 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((0 <𝑦, 0R⟩ → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)) ↔ (0 < 𝐴 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))))
10 df-0 7627 . . . . . 6 0 = ⟨0R, 0R
1110breq1i 3936 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
12 ltresr 7647 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1311, 12bitri 183 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
14 recexgt0sr 7581 . . . . 5 (0R <R 𝑦 → ∃𝑧R (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))
15 opelreal 7635 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1615anbi1i 453 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)))
1710breq1i 3936 . . . . . . . . . . . . 13 (0 <𝑧, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑧, 0R⟩)
18 ltresr 7647 . . . . . . . . . . . . 13 (⟨0R, 0R⟩ <𝑧, 0R⟩ ↔ 0R <R 𝑧)
1917, 18bitri 183 . . . . . . . . . . . 12 (0 <𝑧, 0R⟩ ↔ 0R <R 𝑧)
2019a1i 9 . . . . . . . . . . 11 ((𝑦R𝑧R) → (0 <𝑧, 0R⟩ ↔ 0R <R 𝑧))
21 mulresr 7646 . . . . . . . . . . . . 13 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2221eqeq1d 2148 . . . . . . . . . . . 12 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
23 df-1 7628 . . . . . . . . . . . . . 14 1 = ⟨1R, 0R
2423eqeq2i 2150 . . . . . . . . . . . . 13 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
25 eqid 2139 . . . . . . . . . . . . . 14 0R = 0R
26 1sr 7559 . . . . . . . . . . . . . . 15 1RR
27 0r 7558 . . . . . . . . . . . . . . 15 0RR
28 opthg2 4161 . . . . . . . . . . . . . . 15 ((1RR ∧ 0RR) → (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ ((𝑦 ·R 𝑧) = 1R ∧ 0R = 0R)))
2926, 27, 28mp2an 422 . . . . . . . . . . . . . 14 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ ((𝑦 ·R 𝑧) = 1R ∧ 0R = 0R))
3025, 29mpbiran2 925 . . . . . . . . . . . . 13 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
3124, 30bitri 183 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
3222, 31syl6bb 195 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
3320, 32anbi12d 464 . . . . . . . . . 10 ((𝑦R𝑧R) → ((0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R)))
3433pm5.32da 447 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))))
3516, 34syl5bb 191 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))))
36 breq2 3933 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (0 < 𝑥 ↔ 0 <𝑧, 0R⟩))
37 oveq2 5782 . . . . . . . . . . 11 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3837eqeq1d 2148 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3936, 38anbi12d 464 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)))
4039rspcev 2789 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1))
4135, 40syl6bir 163 . . . . . . 7 (𝑦R → ((𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4241expd 256 . . . . . 6 (𝑦R → (𝑧R → ((0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1))))
4342rexlimdv 2548 . . . . 5 (𝑦R → (∃𝑧R (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4414, 43syl5 32 . . . 4 (𝑦R → (0R <R 𝑦 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4513, 44syl5bi 151 . . 3 (𝑦R → (0 <𝑦, 0R⟩ → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
463, 9, 45gencl 2718 . 2 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
4746imp 123 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wrex 2417  cop 3530   class class class wbr 3929  (class class class)co 5774  Rcnr 7105  0Rc0r 7106  1Rc1r 7107   ·R cmr 7110   <R cltr 7111  cr 7619  0cc0 7620  1c1 7621   < cltrr 7624   · cmul 7625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-ltr 7538  df-0r 7539  df-1r 7540  df-m1r 7541  df-c 7626  df-0 7627  df-1 7628  df-r 7630  df-mul 7632  df-lt 7633
This theorem is referenced by:  rereceu  7697  recriota  7698
  Copyright terms: Public domain W3C validator