ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex GIF version

Theorem axprecex 7964
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 8006.

In treatments which assume excluded middle, the 0 < 𝐴 condition is generally replaced by 𝐴 ≠ 0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem axprecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7912 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 2481 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 184 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 breq2 4038 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐴))
5 oveq1 5932 . . . . . . 7 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2205 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76anbi2d 464 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
87rexbidv 2498 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
94, 8imbi12d 234 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((0 <𝑦, 0R⟩ → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)) ↔ (0 < 𝐴 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))))
10 df-0 7903 . . . . . 6 0 = ⟨0R, 0R
1110breq1i 4041 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
12 ltresr 7923 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1311, 12bitri 184 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
14 recexgt0sr 7857 . . . . 5 (0R <R 𝑦 → ∃𝑧R (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))
15 opelreal 7911 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1615anbi1i 458 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)))
1710breq1i 4041 . . . . . . . . . . . . 13 (0 <𝑧, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑧, 0R⟩)
18 ltresr 7923 . . . . . . . . . . . . 13 (⟨0R, 0R⟩ <𝑧, 0R⟩ ↔ 0R <R 𝑧)
1917, 18bitri 184 . . . . . . . . . . . 12 (0 <𝑧, 0R⟩ ↔ 0R <R 𝑧)
2019a1i 9 . . . . . . . . . . 11 ((𝑦R𝑧R) → (0 <𝑧, 0R⟩ ↔ 0R <R 𝑧))
21 mulresr 7922 . . . . . . . . . . . . 13 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2221eqeq1d 2205 . . . . . . . . . . . 12 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
23 df-1 7904 . . . . . . . . . . . . . 14 1 = ⟨1R, 0R
2423eqeq2i 2207 . . . . . . . . . . . . 13 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
25 eqid 2196 . . . . . . . . . . . . . 14 0R = 0R
26 1sr 7835 . . . . . . . . . . . . . . 15 1RR
27 0r 7834 . . . . . . . . . . . . . . 15 0RR
28 opthg2 4273 . . . . . . . . . . . . . . 15 ((1RR ∧ 0RR) → (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ ((𝑦 ·R 𝑧) = 1R ∧ 0R = 0R)))
2926, 27, 28mp2an 426 . . . . . . . . . . . . . 14 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ ((𝑦 ·R 𝑧) = 1R ∧ 0R = 0R))
3025, 29mpbiran2 943 . . . . . . . . . . . . 13 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
3124, 30bitri 184 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
3222, 31bitrdi 196 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
3320, 32anbi12d 473 . . . . . . . . . 10 ((𝑦R𝑧R) → ((0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R)))
3433pm5.32da 452 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))))
3516, 34bitrid 192 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))))
36 breq2 4038 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (0 < 𝑥 ↔ 0 <𝑧, 0R⟩))
37 oveq2 5933 . . . . . . . . . . 11 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3837eqeq1d 2205 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3936, 38anbi12d 473 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)))
4039rspcev 2868 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1))
4135, 40biimtrrdi 164 . . . . . . 7 (𝑦R → ((𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4241expd 258 . . . . . 6 (𝑦R → (𝑧R → ((0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1))))
4342rexlimdv 2613 . . . . 5 (𝑦R → (∃𝑧R (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4414, 43syl5 32 . . . 4 (𝑦R → (0R <R 𝑦 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4513, 44biimtrid 152 . . 3 (𝑦R → (0 <𝑦, 0R⟩ → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
463, 9, 45gencl 2795 . 2 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
4746imp 124 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  wrex 2476  cop 3626   class class class wbr 4034  (class class class)co 5925  Rcnr 7381  0Rc0r 7382  1Rc1r 7383   ·R cmr 7386   <R cltr 7387  cr 7895  0cc0 7896  1c1 7897   < cltrr 7900   · cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-imp 7553  df-iltp 7554  df-enr 7810  df-nr 7811  df-plr 7812  df-mr 7813  df-ltr 7814  df-0r 7815  df-1r 7816  df-m1r 7817  df-c 7902  df-0 7903  df-1 7904  df-r 7906  df-mul 7908  df-lt 7909
This theorem is referenced by:  rereceu  7973  recriota  7974
  Copyright terms: Public domain W3C validator