ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axprecex GIF version

Theorem axprecex 7821
Description: Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7863.

In treatments which assume excluded middle, the 0 < 𝐴 condition is generally replaced by 𝐴 ≠ 0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axprecex ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem axprecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7769 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 2450 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 183 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 breq2 3986 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (0 <𝑦, 0R⟩ ↔ 0 < 𝐴))
5 oveq1 5849 . . . . . . 7 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2174 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76anbi2d 460 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
87rexbidv 2467 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
94, 8imbi12d 233 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((0 <𝑦, 0R⟩ → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)) ↔ (0 < 𝐴 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))))
10 df-0 7760 . . . . . 6 0 = ⟨0R, 0R
1110breq1i 3989 . . . . 5 (0 <𝑦, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑦, 0R⟩)
12 ltresr 7780 . . . . 5 (⟨0R, 0R⟩ <𝑦, 0R⟩ ↔ 0R <R 𝑦)
1311, 12bitri 183 . . . 4 (0 <𝑦, 0R⟩ ↔ 0R <R 𝑦)
14 recexgt0sr 7714 . . . . 5 (0R <R 𝑦 → ∃𝑧R (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))
15 opelreal 7768 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1615anbi1i 454 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)))
1710breq1i 3989 . . . . . . . . . . . . 13 (0 <𝑧, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑧, 0R⟩)
18 ltresr 7780 . . . . . . . . . . . . 13 (⟨0R, 0R⟩ <𝑧, 0R⟩ ↔ 0R <R 𝑧)
1917, 18bitri 183 . . . . . . . . . . . 12 (0 <𝑧, 0R⟩ ↔ 0R <R 𝑧)
2019a1i 9 . . . . . . . . . . 11 ((𝑦R𝑧R) → (0 <𝑧, 0R⟩ ↔ 0R <R 𝑧))
21 mulresr 7779 . . . . . . . . . . . . 13 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2221eqeq1d 2174 . . . . . . . . . . . 12 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
23 df-1 7761 . . . . . . . . . . . . . 14 1 = ⟨1R, 0R
2423eqeq2i 2176 . . . . . . . . . . . . 13 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
25 eqid 2165 . . . . . . . . . . . . . 14 0R = 0R
26 1sr 7692 . . . . . . . . . . . . . . 15 1RR
27 0r 7691 . . . . . . . . . . . . . . 15 0RR
28 opthg2 4217 . . . . . . . . . . . . . . 15 ((1RR ∧ 0RR) → (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ ((𝑦 ·R 𝑧) = 1R ∧ 0R = 0R)))
2926, 27, 28mp2an 423 . . . . . . . . . . . . . 14 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ ((𝑦 ·R 𝑧) = 1R ∧ 0R = 0R))
3025, 29mpbiran2 931 . . . . . . . . . . . . 13 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
3124, 30bitri 183 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
3222, 31bitrdi 195 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
3320, 32anbi12d 465 . . . . . . . . . 10 ((𝑦R𝑧R) → ((0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R)))
3433pm5.32da 448 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))))
3516, 34syl5bb 191 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) ↔ (𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R))))
36 breq2 3986 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (0 < 𝑥 ↔ 0 <𝑧, 0R⟩))
37 oveq2 5850 . . . . . . . . . . 11 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3837eqeq1d 2174 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3936, 38anbi12d 465 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)))
4039rspcev 2830 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (0 <𝑧, 0R⟩ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1))
4135, 40syl6bir 163 . . . . . . 7 (𝑦R → ((𝑧R ∧ (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4241expd 256 . . . . . 6 (𝑦R → (𝑧R → ((0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1))))
4342rexlimdv 2582 . . . . 5 (𝑦R → (∃𝑧R (0R <R 𝑧 ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4414, 43syl5 32 . . . 4 (𝑦R → (0R <R 𝑦 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
4513, 44syl5bi 151 . . 3 (𝑦R → (0 <𝑦, 0R⟩ → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
463, 9, 45gencl 2758 . 2 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
4746imp 123 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wrex 2445  cop 3579   class class class wbr 3982  (class class class)co 5842  Rcnr 7238  0Rc0r 7239  1Rc1r 7240   ·R cmr 7243   <R cltr 7244  cr 7752  0cc0 7753  1c1 7754   < cltrr 7757   · cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674  df-c 7759  df-0 7760  df-1 7761  df-r 7763  df-mul 7765  df-lt 7766
This theorem is referenced by:  rereceu  7830  recriota  7831
  Copyright terms: Public domain W3C validator