ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemres GIF version

Theorem axcaucvglemres 8027
Description: Lemma for axcaucvg 8028. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
axcaucvg.g 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
Assertion
Ref Expression
axcaucvglemres (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Distinct variable groups:   𝑘,𝐹,𝑗,𝑛   𝑦,𝐹,𝑗,𝑘   𝑧,𝐹,𝑗   𝑘,𝐺,𝑥,𝑙,𝑢   𝑛,𝐺,𝑙,𝑢,𝑧   𝑘,𝑁,𝑗,𝑛   𝑦,𝑁,𝑥   𝜑,𝑘,𝑥   𝑗,𝑙,𝑢,𝑦   𝜑,𝑗,𝑥   𝑘,𝑟,𝑙,𝑛,𝑢   𝑧,𝑙,𝑢   𝜑,𝑛   𝑥,𝑦   𝑗,𝑛,𝑧,𝑘   𝑥,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑟,𝑙)   𝐹(𝑥,𝑢,𝑟,𝑙)   𝐺(𝑦,𝑗,𝑟)   𝑁(𝑧,𝑢,𝑟,𝑙)

Proof of Theorem axcaucvglemres
Dummy variables 𝑏 𝑒 𝑓 𝑔 𝑎 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . . . 4 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 axcaucvg.f . . . 4 (𝜑𝐹:𝑁⟶ℝ)
3 axcaucvg.cau . . . 4 (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
4 axcaucvg.g . . . 4 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
51, 2, 3, 4axcaucvglemf 8024 . . 3 (𝜑𝐺:NR)
61, 2, 3, 4axcaucvglemcau 8026 . . 3 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
75, 6caucvgsr 7930 . 2 (𝜑 → ∃𝑏R𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
8 opelreal 7955 . . . . 5 (⟨𝑏, 0R⟩ ∈ ℝ ↔ 𝑏R)
98biimpri 133 . . . 4 (𝑏R → ⟨𝑏, 0R⟩ ∈ ℝ)
109ad2antrl 490 . . 3 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))) → ⟨𝑏, 0R⟩ ∈ ℝ)
11 breq2 4054 . . . . . . . . . 10 (𝑑 = 𝑘 → (𝑐 <N 𝑑𝑐 <N 𝑘))
12 fveq2 5588 . . . . . . . . . . . 12 (𝑑 = 𝑘 → (𝐺𝑑) = (𝐺𝑘))
1312breq1d 4060 . . . . . . . . . . 11 (𝑑 = 𝑘 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ↔ (𝐺𝑘) <R (𝑏 +R 𝑎)))
1412oveq1d 5971 . . . . . . . . . . . 12 (𝑑 = 𝑘 → ((𝐺𝑑) +R 𝑎) = ((𝐺𝑘) +R 𝑎))
1514breq2d 4062 . . . . . . . . . . 11 (𝑑 = 𝑘 → (𝑏 <R ((𝐺𝑑) +R 𝑎) ↔ 𝑏 <R ((𝐺𝑘) +R 𝑎)))
1613, 15anbi12d 473 . . . . . . . . . 10 (𝑑 = 𝑘 → (((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)) ↔ ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))
1711, 16imbi12d 234 . . . . . . . . 9 (𝑑 = 𝑘 → ((𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
1817cbvralv 2739 . . . . . . . 8 (∀𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ ∀𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))
1918rexbii 2514 . . . . . . 7 (∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))
2019imbi2i 226 . . . . . 6 ((0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) ↔ (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
2120ralbii 2513 . . . . 5 (∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) ↔ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
2221anbi2i 457 . . . 4 ((𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))))) ↔ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))))
23 elreal 7956 . . . . . . . . 9 (𝑥 ∈ ℝ ↔ ∃𝑒R𝑒, 0R⟩ = 𝑥)
2423biimpi 120 . . . . . . . 8 (𝑥 ∈ ℝ → ∃𝑒R𝑒, 0R⟩ = 𝑥)
2524ad2antlr 489 . . . . . . 7 ((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) → ∃𝑒R𝑒, 0R⟩ = 𝑥)
26 simplrr 536 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) → ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))
2726ad2antrr 488 . . . . . . . . . 10 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))
28 simprr 531 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ⟨𝑒, 0R⟩ = 𝑥)
29 simplr 528 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → 0 < 𝑥)
30 breq2 4054 . . . . . . . . . . . . 13 (⟨𝑒, 0R⟩ = 𝑥 → (0 <𝑒, 0R⟩ ↔ 0 < 𝑥))
31 df-0 7947 . . . . . . . . . . . . . . 15 0 = ⟨0R, 0R
3231breq1i 4057 . . . . . . . . . . . . . 14 (0 <𝑒, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑒, 0R⟩)
33 ltresr 7967 . . . . . . . . . . . . . 14 (⟨0R, 0R⟩ <𝑒, 0R⟩ ↔ 0R <R 𝑒)
3432, 33bitri 184 . . . . . . . . . . . . 13 (0 <𝑒, 0R⟩ ↔ 0R <R 𝑒)
3530, 34bitr3di 195 . . . . . . . . . . . 12 (⟨𝑒, 0R⟩ = 𝑥 → (0 < 𝑥 ↔ 0R <R 𝑒))
3635biimpa 296 . . . . . . . . . . 11 ((⟨𝑒, 0R⟩ = 𝑥 ∧ 0 < 𝑥) → 0R <R 𝑒)
3728, 29, 36syl2anc 411 . . . . . . . . . 10 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → 0R <R 𝑒)
38 breq2 4054 . . . . . . . . . . . . 13 (𝑎 = 𝑒 → (0R <R 𝑎 ↔ 0R <R 𝑒))
39 oveq2 5964 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑒 → (𝑏 +R 𝑎) = (𝑏 +R 𝑒))
4039breq2d 4062 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑒 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ↔ (𝐺𝑑) <R (𝑏 +R 𝑒)))
41 oveq2 5964 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑒 → ((𝐺𝑑) +R 𝑎) = ((𝐺𝑑) +R 𝑒))
4241breq2d 4062 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑒 → (𝑏 <R ((𝐺𝑑) +R 𝑎) ↔ 𝑏 <R ((𝐺𝑑) +R 𝑒)))
4340, 42anbi12d 473 . . . . . . . . . . . . . . 15 (𝑎 = 𝑒 → (((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)) ↔ ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
4443imbi2d 230 . . . . . . . . . . . . . 14 (𝑎 = 𝑒 → ((𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
4544rexralbidv 2533 . . . . . . . . . . . . 13 (𝑎 = 𝑒 → (∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
4638, 45imbi12d 234 . . . . . . . . . . . 12 (𝑎 = 𝑒 → ((0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) ↔ (0R <R 𝑒 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))))
4746rspcv 2877 . . . . . . . . . . 11 (𝑒R → (∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) → (0R <R 𝑒 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))))
4847ad2antrl 490 . . . . . . . . . 10 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → (∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) → (0R <R 𝑒 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))))
4927, 37, 48mp2d 47 . . . . . . . . 9 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
50 breq1 4053 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑐 <N 𝑑𝑓 <N 𝑑))
5150imbi1d 231 . . . . . . . . . . 11 (𝑐 = 𝑓 → ((𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
5251ralbidv 2507 . . . . . . . . . 10 (𝑐 = 𝑓 → (∀𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
5352cbvrexv 2740 . . . . . . . . 9 (∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ ∃𝑓N𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
5449, 53sylib 122 . . . . . . . 8 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∃𝑓N𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
55 pitonn 7976 . . . . . . . . . . 11 (𝑓N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
5655, 1eleqtrrdi 2300 . . . . . . . . . 10 (𝑓N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
5756ad2antrl 490 . . . . . . . . 9 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
581nntopi 8022 . . . . . . . . . . . 12 (𝑘𝑁 → ∃𝑔N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
5958adantl 277 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → ∃𝑔N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
60 breq2 4054 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → (𝑓 <N 𝑑𝑓 <N 𝑔))
61 fveq2 5588 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑔 → (𝐺𝑑) = (𝐺𝑔))
6261breq1d 4060 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ↔ (𝐺𝑔) <R (𝑏 +R 𝑒)))
6361oveq1d 5971 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑔 → ((𝐺𝑑) +R 𝑒) = ((𝐺𝑔) +R 𝑒))
6463breq2d 4062 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝑏 <R ((𝐺𝑑) +R 𝑒) ↔ 𝑏 <R ((𝐺𝑔) +R 𝑒)))
6562, 64anbi12d 473 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → (((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)) ↔ ((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒))))
6660, 65imbi12d 234 . . . . . . . . . . . . 13 (𝑑 = 𝑔 → ((𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ (𝑓 <N 𝑔 → ((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒)))))
67 simplrr 536 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
6867adantr 276 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
69 simprl 529 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑔N)
7066, 68, 69rspcdva 2886 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑓 <N 𝑔 → ((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒))))
71 simplrl 535 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → 𝑓N)
7271adantr 276 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑓N)
73 ltrennb 7982 . . . . . . . . . . . . . 14 ((𝑓N𝑔N) → (𝑓 <N 𝑔 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
7472, 69, 73syl2anc 411 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑓 <N 𝑔 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
75 simprr 531 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
7675breq2d 4062 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘))
7774, 76bitrd 188 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑓 <N 𝑔 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘))
78 ltresr 7967 . . . . . . . . . . . . . 14 (⟨(𝐺𝑔), 0R⟩ < ⟨(𝑏 +R 𝑒), 0R⟩ ↔ (𝐺𝑔) <R (𝑏 +R 𝑒))
79 simplll 533 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) → 𝜑)
8079ad4antr 494 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝜑)
811, 2, 3, 4axcaucvglemval 8025 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑔), 0R⟩)
8280, 69, 81syl2anc 411 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑔), 0R⟩)
8375fveq2d 5592 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (𝐹𝑘))
8482, 83eqtr3d 2241 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨(𝐺𝑔), 0R⟩ = (𝐹𝑘))
85 simplrl 535 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) → 𝑏R)
8685ad5antr 496 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑏R)
87 simplrl 535 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → 𝑒R)
8887ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑒R)
89 addresr 7965 . . . . . . . . . . . . . . . . 17 ((𝑏R𝑒R) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = ⟨(𝑏 +R 𝑒), 0R⟩)
9086, 88, 89syl2anc 411 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = ⟨(𝑏 +R 𝑒), 0R⟩)
9128oveq2d 5972 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = (⟨𝑏, 0R⟩ + 𝑥))
9291ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = (⟨𝑏, 0R⟩ + 𝑥))
9390, 92eqtr3d 2241 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨(𝑏 +R 𝑒), 0R⟩ = (⟨𝑏, 0R⟩ + 𝑥))
9484, 93breq12d 4063 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨(𝐺𝑔), 0R⟩ < ⟨(𝑏 +R 𝑒), 0R⟩ ↔ (𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥)))
9578, 94bitr3id 194 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ((𝐺𝑔) <R (𝑏 +R 𝑒) ↔ (𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥)))
96 ltresr 7967 . . . . . . . . . . . . . 14 (⟨𝑏, 0R⟩ < ⟨((𝐺𝑔) +R 𝑒), 0R⟩ ↔ 𝑏 <R ((𝐺𝑔) +R 𝑒))
9780, 5syl 14 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝐺:NR)
9897, 69ffvelcdmd 5728 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝐺𝑔) ∈ R)
99 addresr 7965 . . . . . . . . . . . . . . . . 17 (((𝐺𝑔) ∈ R𝑒R) → (⟨(𝐺𝑔), 0R⟩ + ⟨𝑒, 0R⟩) = ⟨((𝐺𝑔) +R 𝑒), 0R⟩)
10098, 88, 99syl2anc 411 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨(𝐺𝑔), 0R⟩ + ⟨𝑒, 0R⟩) = ⟨((𝐺𝑔) +R 𝑒), 0R⟩)
10128ad3antrrr 492 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨𝑒, 0R⟩ = 𝑥)
10284, 101oveq12d 5974 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨(𝐺𝑔), 0R⟩ + ⟨𝑒, 0R⟩) = ((𝐹𝑘) + 𝑥))
103100, 102eqtr3d 2241 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨((𝐺𝑔) +R 𝑒), 0R⟩ = ((𝐹𝑘) + 𝑥))
104103breq2d 4062 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨𝑏, 0R⟩ < ⟨((𝐺𝑔) +R 𝑒), 0R⟩ ↔ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))
10596, 104bitr3id 194 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑏 <R ((𝐺𝑔) +R 𝑒) ↔ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))
10695, 105anbi12d 473 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒)) ↔ ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
10770, 77, 1063imtr3d 202 . . . . . . . . . . 11 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
10859, 107rexlimddv 2629 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
109108ralrimiva 2580 . . . . . . . . 9 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → ∀𝑘𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
110 breq1 4053 . . . . . . . . . . . 12 (𝑗 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑗 < 𝑘 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘))
111110imbi1d 231 . . . . . . . . . . 11 (𝑗 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
112111ralbidv 2507 . . . . . . . . . 10 (𝑗 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (∀𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑘𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
113112rspcev 2881 . . . . . . . . 9 ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁 ∧ ∀𝑘𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
11457, 109, 113syl2anc 411 . . . . . . . 8 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
11554, 114rexlimddv 2629 . . . . . . 7 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
11625, 115rexlimddv 2629 . . . . . 6 ((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
117116ex 115 . . . . 5 (((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
118117ralrimiva 2580 . . . 4 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) → ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
11922, 118sylan2br 288 . . 3 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))) → ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
120 oveq1 5963 . . . . . . . . . 10 (𝑦 = ⟨𝑏, 0R⟩ → (𝑦 + 𝑥) = (⟨𝑏, 0R⟩ + 𝑥))
121120breq2d 4062 . . . . . . . . 9 (𝑦 = ⟨𝑏, 0R⟩ → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥)))
122 breq1 4053 . . . . . . . . 9 (𝑦 = ⟨𝑏, 0R⟩ → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))
123121, 122anbi12d 473 . . . . . . . 8 (𝑦 = ⟨𝑏, 0R⟩ → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
124123imbi2d 230 . . . . . . 7 (𝑦 = ⟨𝑏, 0R⟩ → ((𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
125124rexralbidv 2533 . . . . . 6 (𝑦 = ⟨𝑏, 0R⟩ → (∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
126125imbi2d 230 . . . . 5 (𝑦 = ⟨𝑏, 0R⟩ → ((0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))))
127126ralbidv 2507 . . . 4 (𝑦 = ⟨𝑏, 0R⟩ → (∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))))
128127rspcev 2881 . . 3 ((⟨𝑏, 0R⟩ ∈ ℝ ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
12910, 119, 128syl2anc 411 . 2 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1307, 129rexlimddv 2629 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  cop 3640   cint 3890   class class class wbr 4050  cmpt 4112  wf 5275  cfv 5279  crio 5910  (class class class)co 5956  1oc1o 6507  [cec 6630  Ncnpi 7400   <N clti 7403   ~Q ceq 7407   <Q cltq 7413  1Pc1p 7420   +P cpp 7421   ~R cer 7424  Rcnr 7425  0Rc0r 7426   +R cplr 7429   <R cltr 7431  cr 7939  0cc0 7940  1c1 7941   + caddc 7943   < cltrr 7944   · cmul 7945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-eprel 4343  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-1o 6514  df-2o 6515  df-oadd 6518  df-omul 6519  df-er 6632  df-ec 6634  df-qs 6638  df-ni 7432  df-pli 7433  df-mi 7434  df-lti 7435  df-plpq 7472  df-mpq 7473  df-enq 7475  df-nqqs 7476  df-plqqs 7477  df-mqqs 7478  df-1nqqs 7479  df-rq 7480  df-ltnqqs 7481  df-enq0 7552  df-nq0 7553  df-0nq0 7554  df-plq0 7555  df-mq0 7556  df-inp 7594  df-i1p 7595  df-iplp 7596  df-imp 7597  df-iltp 7598  df-enr 7854  df-nr 7855  df-plr 7856  df-mr 7857  df-ltr 7858  df-0r 7859  df-1r 7860  df-m1r 7861  df-c 7946  df-0 7947  df-1 7948  df-r 7950  df-add 7951  df-mul 7952  df-lt 7953
This theorem is referenced by:  axcaucvg  8028
  Copyright terms: Public domain W3C validator