ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax0lt1 GIF version

Theorem ax0lt1 7312
Description: 0 is less than 1. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0lt1 7352.

The version of this axiom in the Metamath Proof Explorer reads 1 ≠ 0; here we change it to 0 < 1. The proof of 0 < 1 from 1 ≠ 0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
ax0lt1 0 < 1

Proof of Theorem ax0lt1
StepHypRef Expression
1 0lt1sr 7212 . . 3 0R <R 1R
2 ltresr 7277 . . 3 (⟨0R, 0R⟩ < ⟨1R, 0R⟩ ↔ 0R <R 1R)
31, 2mpbir 144 . 2 ⟨0R, 0R⟩ < ⟨1R, 0R
4 df-0 7258 . 2 0 = ⟨0R, 0R
5 df-1 7259 . 2 1 = ⟨1R, 0R
63, 4, 53brtr4i 3839 1 0 < 1
Colors of variables: wff set class
Syntax hints:  cop 3425   class class class wbr 3811  0Rc0r 6758  1Rc1r 6759   <R cltr 6763  0cc0 7251  1c1 7252   < cltrr 7255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4079  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-1o 6111  df-2o 6112  df-oadd 6115  df-omul 6116  df-er 6220  df-ec 6222  df-qs 6226  df-ni 6764  df-pli 6765  df-mi 6766  df-lti 6767  df-plpq 6804  df-mpq 6805  df-enq 6807  df-nqqs 6808  df-plqqs 6809  df-mqqs 6810  df-1nqqs 6811  df-rq 6812  df-ltnqqs 6813  df-enq0 6884  df-nq0 6885  df-0nq0 6886  df-plq0 6887  df-mq0 6888  df-inp 6926  df-i1p 6927  df-iplp 6928  df-iltp 6930  df-enr 7173  df-nr 7174  df-ltr 7177  df-0r 7178  df-1r 7179  df-0 7258  df-1 7259  df-r 7261  df-lt 7264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator