HomeHome Intuitionistic Logic Explorer
Theorem List (p. 79 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7801-7900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsuplocexprlemrl 7801* Lemma for suplocexpr 7809. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))       (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
 
Theoremsuplocexprlemmu 7802* Lemma for suplocexpr 7809. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
 
Theoremsuplocexprlemru 7803* Lemma for suplocexpr 7809. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
 
Theoremsuplocexprlemdisj 7804* Lemma for suplocexpr 7809. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
 
Theoremsuplocexprlemloc 7805* Lemma for suplocexpr 7809. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
 
Theoremsuplocexprlemex 7806* Lemma for suplocexpr 7809. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑𝐵P)
 
Theoremsuplocexprlemub 7807* Lemma for suplocexpr 7809. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
 
Theoremsuplocexprlemlub 7808* Lemma for suplocexpr 7809. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
 
Theoremsuplocexpr 7809* An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))       (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
 
Definitiondf-enr 7810* Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
 
Definitiondf-nr 7811 Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
R = ((P × P) / ~R )
 
Definitiondf-plr 7812* Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
+R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
 
Definitiondf-mr 7813* Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
 
Definitiondf-ltr 7814* Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.)
<R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
 
Definitiondf-0r 7815 Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
0R = [⟨1P, 1P⟩] ~R
 
Definitiondf-1r 7816 Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
1R = [⟨(1P +P 1P), 1P⟩] ~R
 
Definitiondf-m1r 7817 Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.)
-1R = [⟨1P, (1P +P 1P)⟩] ~R
 
Theoremenrbreq 7818 Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
 
Theoremenrer 7819 The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
~R Er (P × P)
 
Theoremenreceq 7820 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
 
Theoremenrex 7821 The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
~R ∈ V
 
Theoremltrelsr 7822 Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
<R ⊆ (R × R)
 
Theoremaddcmpblnr 7823 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))
 
Theoremmulcmpblnrlemg 7824 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))))
 
Theoremmulcmpblnr 7825 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))
 
Theoremprsrlem1 7826* Decomposing signed reals into positive reals. Lemma for addsrpr 7829 and mulsrpr 7830. (Contributed by Jim Kingdon, 30-Dec-2019.)
(((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
 
Theoremaddsrmo 7827* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
 
Theoremmulsrmo 7828* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
 
Theoremaddsrpr 7829 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
 
Theoremmulsrpr 7830 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ·R [⟨𝐶, 𝐷⟩] ~R ) = [⟨((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))⟩] ~R )
 
Theoremltsrprg 7831 Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
 
Theoremgt0srpr 7832 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
(0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)
 
Theorem0nsr 7833 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.)
¬ ∅ ∈ R
 
Theorem0r 7834 The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.)
0RR
 
Theorem1sr 7835 The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.)
1RR
 
Theoremm1r 7836 The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
-1RR
 
Theoremaddclsr 7837 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)
 
Theoremmulclsr 7838 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
 
Theoremaddcomsrg 7839 Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
 
Theoremaddasssrg 7840 Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)))
 
Theoremmulcomsrg 7841 Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
 
Theoremmulasssrg 7842 Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
 
Theoremdistrsrg 7843 Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
 
Theoremm1p1sr 7844 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
(-1R +R 1R) = 0R
 
Theoremm1m1sr 7845 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
(-1R ·R -1R) = 1R
 
Theoremlttrsr 7846* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
 
Theoremltposr 7847 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
<R Po R
 
Theoremltsosr 7848 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
<R Or R
 
Theorem0lt1sr 7849 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
0R <R 1R
 
Theorem1ne0sr 7850 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
¬ 1R = 0R
 
Theorem0idsr 7851 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 +R 0R) = 𝐴)
 
Theorem1idsr 7852 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
(𝐴R → (𝐴 ·R 1R) = 𝐴)
 
Theorem00sr 7853 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 ·R 0R) = 0R)
 
Theoremltasrg 7854 Ordering property of addition. (Contributed by NM, 10-May-1996.)
((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
 
Theorempn0sr 7855 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
(𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
 
Theoremnegexsr 7856* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
(𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
 
Theoremrecexgt0sr 7857* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
(0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R))
 
Theoremrecexsrlem 7858* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
(0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
 
Theoremaddgt0sr 7859 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))
 
Theoremltadd1sr 7860 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴R𝐴 <R (𝐴 +R 1R))
 
Theoremltm1sr 7861 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
(𝐴R → (𝐴 +R -1R) <R 𝐴)
 
Theoremmulgt0sr 7862 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
 
Theoremaptisr 7863 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
 
Theoremmulextsr1lem 7864 Lemma for mulextsr1 7865. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
 
Theoremmulextsr1 7865 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
 
Theoremarchsr 7866* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
 
Theoremsrpospr 7867* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremprsrcl 7868 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → [⟨(𝐴 +P 1P), 1P⟩] ~RR)
 
Theoremprsrpos 7869 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → 0R <R [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
Theoremprsradd 7870 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrlt 7871 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrriota 7872* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremcaucvgsrlemcl 7873* Lemma for caucvgsr 7886. Terms of the sequence from caucvgsrlemgt1 7879 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
 
Theoremcaucvgsrlemasr 7874* Lemma for caucvgsr 7886. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
(𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑𝐴R)
 
Theoremcaucvgsrlemfv 7875* Lemma for caucvgsr 7886. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
 
Theoremcaucvgsrlemf 7876* Lemma for caucvgsr 7886. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑𝐺:NP)
 
Theoremcaucvgsrlemcau 7877* Lemma for caucvgsr 7886. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛)<P ((𝐺𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐺𝑘)<P ((𝐺𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
 
Theoremcaucvgsrlembound 7878* Lemma for caucvgsr 7886. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
 
Theoremcaucvgsrlemgt1 7879* Lemma for caucvgsr 7886. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
 
Theoremcaucvgsrlemoffval 7880* Lemma for caucvgsr 7886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
 
Theoremcaucvgsrlemofff 7881* Lemma for caucvgsr 7886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑𝐺:NR)
 
Theoremcaucvgsrlemoffcau 7882* Lemma for caucvgsr 7886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
 
Theoremcaucvgsrlemoffgt1 7883* Lemma for caucvgsr 7886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
 
Theoremcaucvgsrlemoffres 7884* Lemma for caucvgsr 7886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsrlembnd 7885* Lemma for caucvgsr 7886. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsr 7886* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7796 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7885).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7881).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7796 to get a limit (see caucvgsrlemgt1 7879).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7879).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7884). (Contributed by Jim Kingdon, 20-Jun-2021.)

(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremltpsrprg 7887 Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
((𝐴P𝐵P𝐶R) → ((𝐶 +R [⟨𝐴, 1P⟩] ~R ) <R (𝐶 +R [⟨𝐵, 1P⟩] ~R ) ↔ 𝐴<P 𝐵))
 
Theoremmappsrprg 7888 Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
 
Theoremmap2psrprg 7889* Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
(𝐶R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
 
Theoremsuplocsrlemb 7890* Lemma for suplocsr 7893. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∀𝑢P𝑣P (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
 
Theoremsuplocsrlempr 7891* Lemma for suplocsr 7893. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
 
Theoremsuplocsrlem 7892* Lemma for suplocsr 7893. The set 𝐴 has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
 
Theoremsuplocsr 7893* An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
 
Syntaxcc 7894 Class of complex numbers.
class
 
Syntaxcr 7895 Class of real numbers.
class
 
Syntaxcc0 7896 Extend class notation to include the complex number 0.
class 0
 
Syntaxc1 7897 Extend class notation to include the complex number 1.
class 1
 
Syntaxci 7898 Extend class notation to include the complex number i.
class i
 
Syntaxcaddc 7899 Addition on complex numbers.
class +
 
Syntaxcltrr 7900 'Less than' predicate (defined over real subset of complex numbers).
class <
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >