| Intuitionistic Logic Explorer Theorem List (p. 79 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | caucvgprlemlim 7801* | Lemma for caucvgpr 7802. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑥 ∈ Q ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q 𝑢}〉))) | ||
| Theorem | caucvgpr 7802* |
A Cauchy sequence of positive fractions with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
1 / 𝑛 of the nth term (it should later be
able to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a fraction 𝐴, to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7782 and caucvgprpr 7832. Reading cauappcvgpr 7782 first (the simplest of the three) might help understanding the other two. (Contributed by Jim Kingdon, 18-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑥 ∈ Q ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q 𝑢}〉))) | ||
| Theorem | caucvgprprlemk 7803* | Lemma for caucvgprpr 7832. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.) |
| ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) | ||
| Theorem | caucvgprprlemloccalc 7804* | Lemma for caucvgprpr 7832. Rearranging some expressions for caucvgprprlemloc 7823. (Contributed by Jim Kingdon, 8-Feb-2021.) |
| ⊢ (𝜑 → 𝑆 <Q 𝑇) & ⊢ (𝜑 → 𝑌 ∈ Q) & ⊢ (𝜑 → (𝑆 +Q 𝑌) = 𝑇) & ⊢ (𝜑 → 𝑋 ∈ Q) & ⊢ (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌) & ⊢ (𝜑 → 𝑀 ∈ N) & ⊢ (𝜑 → (*Q‘[〈𝑀, 1o〉] ~Q ) <Q 𝑋) ⇒ ⊢ (𝜑 → (〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q (*Q‘[〈𝑀, 1o〉] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[〈𝑀, 1o〉] ~Q )) <Q 𝑢}〉 +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑀, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑀, 1o〉] ~Q ) <Q 𝑢}〉)<P 〈{𝑙 ∣ 𝑙 <Q 𝑇}, {𝑢 ∣ 𝑇 <Q 𝑢}〉) | ||
| Theorem | caucvgprprlemell 7805* | Lemma for caucvgprpr 7832. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.) |
| ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝑋 ∈ (1st ‘𝐿) ↔ (𝑋 ∈ Q ∧ ∃𝑏 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q (*Q‘[〈𝑏, 1o〉] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[〈𝑏, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | ||
| Theorem | caucvgprprlemelu 7806* | Lemma for caucvgprpr 7832. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.) |
| ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝑋 ∈ (2nd ‘𝐿) ↔ (𝑋 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemcbv 7807* | Lemma for caucvgprpr 7832. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑎, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑎, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑎, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑎, 1o〉] ~Q ) <Q 𝑢}〉)))) | ||
| Theorem | caucvgprprlemval 7808* | Lemma for caucvgprpr 7832. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) ⇒ ⊢ ((𝜑 ∧ 𝐴 <N 𝐵) → ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐴, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐴, 1o〉] ~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐴, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐴, 1o〉] ~Q ) <Q 𝑞}〉))) | ||
| Theorem | caucvgprprlemnkltj 7809* | Lemma for caucvgprpr 7832. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnkeqj 7810* | Lemma for caucvgprpr 7832. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnjltk 7811* | Lemma for caucvgprpr 7832. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnkj 7812* | Lemma for caucvgprpr 7832. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnbj 7813* | Lemma for caucvgprpr 7832. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐵 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) ⇒ ⊢ (𝜑 → ¬ (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐵, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐵, 1o〉] ~Q ) <Q 𝑢}〉) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉)<P (𝐹‘𝐽)) | ||
| Theorem | caucvgprprlemml 7814* | Lemma for caucvgprpr 7832. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | caucvgprprlemmu 7815* | Lemma for caucvgprpr 7832. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿)) | ||
| Theorem | caucvgprprlemm 7816* | Lemma for caucvgprpr 7832. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprprlemopl 7817* | Lemma for caucvgprpr 7832. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) | ||
| Theorem | caucvgprprlemlol 7818* | Lemma for caucvgprpr 7832. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | caucvgprprlemopu 7819* | Lemma for caucvgprpr 7832. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprprlemupu 7820* | Lemma for caucvgprpr 7832. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) | ||
| Theorem | caucvgprprlemrnd 7821* | Lemma for caucvgprpr 7832. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) ∧ ∀𝑡 ∈ Q (𝑡 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | ||
| Theorem | caucvgprprlemdisj 7822* | Lemma for caucvgprpr 7832. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprprlemloc 7823* | Lemma for caucvgprpr 7832. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑡 ∈ Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿)))) | ||
| Theorem | caucvgprprlemcl 7824* | Lemma for caucvgprpr 7832. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | caucvgprprlemclphr 7825* | Lemma for caucvgprpr 7832. The putative limit is a positive real. Like caucvgprprlemcl 7824 but without a disjoint variable condition between 𝜑 and 𝑟. (Contributed by Jim Kingdon, 19-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | caucvgprprlemexbt 7826* | Lemma for caucvgprpr 7832. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑇 ∈ P) & ⊢ (𝜑 → (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) | ||
| Theorem | caucvgprprlemexb 7827* | Lemma for caucvgprpr 7832. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝑅 ∈ N) ⇒ ⊢ (𝜑 → (((𝐿 +P 𝑄) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑅) +P 𝑄) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P (𝑄 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉))<P ((𝐹‘𝑅) +P 𝑄))) | ||
| Theorem | caucvgprprlemaddq 7828* | Lemma for caucvgprpr 7832. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑋 ∈ P) & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → ∃𝑟 ∈ N (𝑋 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑟) +P 𝑄)) ⇒ ⊢ (𝜑 → 𝑋<P (𝐿 +P 𝑄)) | ||
| Theorem | caucvgprprlem1 7829* | Lemma for caucvgprpr 7832. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → (𝐹‘𝐾)<P (𝐿 +P 𝑄)) | ||
| Theorem | caucvgprprlem2 7830* | Lemma for caucvgprpr 7832. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → 𝐿<P ((𝐹‘𝐾) +P 𝑄)) | ||
| Theorem | caucvgprprlemlim 7831* | Lemma for caucvgprpr 7832. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) | ||
| Theorem | caucvgprpr 7832* |
A Cauchy sequence of positive reals with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
1 / 𝑛 of the nth term (it should later be
able to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a given value 𝐴, to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This is similar to caucvgpr 7802 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7782) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝑦 +P 𝑥) ∧ 𝑦<P ((𝐹‘𝑘) +P 𝑥)))) | ||
| Theorem | suplocexprlemell 7833* | Lemma for suplocexpr 7845. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) | ||
| Theorem | suplocexprlem2b 7834 | Lemma for suplocexpr 7845. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | ||
| Theorem | suplocexprlemss 7835* | Lemma for suplocexpr 7845. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → 𝐴 ⊆ P) | ||
| Theorem | suplocexprlemml 7836* | Lemma for suplocexpr 7845. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) | ||
| Theorem | suplocexprlemrl 7837* | Lemma for suplocexpr 7845. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q (𝑞 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ ∪ (1st “ 𝐴)))) | ||
| Theorem | suplocexprlemmu 7838* | Lemma for suplocexpr 7845. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (2nd ‘𝐵)) | ||
| Theorem | suplocexprlemru 7839* | Lemma for suplocexpr 7845. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | ||
| Theorem | suplocexprlemdisj 7840* | Lemma for suplocexpr 7845. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ¬ (𝑞 ∈ ∪ (1st “ 𝐴) ∧ 𝑞 ∈ (2nd ‘𝐵))) | ||
| Theorem | suplocexprlemloc 7841* | Lemma for suplocexpr 7845. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ ∪ (1st “ 𝐴) ∨ 𝑟 ∈ (2nd ‘𝐵)))) | ||
| Theorem | suplocexprlemex 7842* | Lemma for suplocexpr 7845. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐵 ∈ P) | ||
| Theorem | suplocexprlemub 7843* | Lemma for suplocexpr 7845. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ 𝐵<P 𝑦) | ||
| Theorem | suplocexprlemlub 7844* | Lemma for suplocexpr 7845. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (𝑦<P 𝐵 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) | ||
| Theorem | suplocexpr 7845* | An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | ||
| Definition | df-enr 7846* | Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | ||
| Definition | df-nr 7847 | Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
| ⊢ R = ((P × P) / ~R ) | ||
| Definition | df-plr 7848* | Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
| ⊢ +R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑓)〉] ~R ))} | ||
| Definition | df-mr 7849* | Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
| ⊢ ·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} | ||
| Definition | df-ltr 7850* | Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | ||
| Definition | df-0r 7851 | Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 0R = [〈1P, 1P〉] ~R | ||
| Definition | df-1r 7852 | Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | ||
| Definition | df-m1r 7853 | Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) |
| ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | ||
| Theorem | enrbreq 7854 | Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrer 7855 | The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| ⊢ ~R Er (P × P) | ||
| Theorem | enreceq 7856 | Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R = [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrex 7857 | The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ~R ∈ V | ||
| Theorem | ltrelsr 7858 | Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <R ⊆ (R × R) | ||
| Theorem | addcmpblnr 7859 | Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉 ~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) | ||
| Theorem | mulcmpblnrlemg 7860 | Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))) | ||
| Theorem | mulcmpblnr 7861 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
| Theorem | prsrlem1 7862* | Decomposing signed reals into positive reals. Lemma for addsrpr 7865 and mulsrpr 7866. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
| Theorem | addsrmo 7863* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
| Theorem | mulsrmo 7864* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
| Theorem | addsrpr 7865 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
| Theorem | mulsrpr 7866 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
| Theorem | ltsrprg 7867 | Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))) | ||
| Theorem | gt0srpr 7868 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
| ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
| Theorem | 0nsr 7869 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) |
| ⊢ ¬ ∅ ∈ R | ||
| Theorem | 0r 7870 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 0R ∈ R | ||
| Theorem | 1sr 7871 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 1R ∈ R | ||
| Theorem | m1r 7872 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ -1R ∈ R | ||
| Theorem | addclsr 7873 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
| Theorem | mulclsr 7874 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
| Theorem | addcomsrg 7875 | Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) | ||
| Theorem | addasssrg 7876 | Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) | ||
| Theorem | mulcomsrg 7877 | Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) | ||
| Theorem | mulasssrg 7878 | Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))) | ||
| Theorem | distrsrg 7879 | Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))) | ||
| Theorem | m1p1sr 7880 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) |
| ⊢ (-1R +R 1R) = 0R | ||
| Theorem | m1m1sr 7881 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) |
| ⊢ (-1R ·R -1R) = 1R | ||
| Theorem | lttrsr 7882* | Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | ||
| Theorem | ltposr 7883 | Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| ⊢ <R Po R | ||
| Theorem | ltsosr 7884 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) |
| ⊢ <R Or R | ||
| Theorem | 0lt1sr 7885 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
| ⊢ 0R <R 1R | ||
| Theorem | 1ne0sr 7886 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) |
| ⊢ ¬ 1R = 0R | ||
| Theorem | 0idsr 7887 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
| Theorem | 1idsr 7888 | 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.) |
| ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
| Theorem | 00sr 7889 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
| Theorem | ltasrg 7890 | Ordering property of addition. (Contributed by NM, 10-May-1996.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
| Theorem | pn0sr 7891 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
| Theorem | negexsr 7892* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) |
| ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
| Theorem | recexgt0sr 7893* | The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) |
| ⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)) | ||
| Theorem | recexsrlem 7894* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) |
| ⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
| Theorem | addgt0sr 7895 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
| Theorem | ltadd1sr 7896 | Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.) |
| ⊢ (𝐴 ∈ R → 𝐴 <R (𝐴 +R 1R)) | ||
| Theorem | ltm1sr 7897 | Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R -1R) <R 𝐴) | ||
| Theorem | mulgt0sr 7898 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
| Theorem | aptisr 7899 | Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ ¬ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)) → 𝐴 = 𝐵) | ||
| Theorem | mulextsr1lem 7900 | Lemma for mulextsr1 7901. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| ⊢ (((𝑋 ∈ P ∧ 𝑌 ∈ P) ∧ (𝑍 ∈ P ∧ 𝑊 ∈ P) ∧ (𝑈 ∈ P ∧ 𝑉 ∈ P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |