| Intuitionistic Logic Explorer Theorem List (p. 79 of 158) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | enrbreq 7801 | Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrer 7802 | The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| ⊢ ~R Er (P × P) | ||
| Theorem | enreceq 7803 | Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R = [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrex 7804 | The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ~R ∈ V | ||
| Theorem | ltrelsr 7805 | Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <R ⊆ (R × R) | ||
| Theorem | addcmpblnr 7806 | Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉 ~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) | ||
| Theorem | mulcmpblnrlemg 7807 | Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))) | ||
| Theorem | mulcmpblnr 7808 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
| Theorem | prsrlem1 7809* | Decomposing signed reals into positive reals. Lemma for addsrpr 7812 and mulsrpr 7813. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
| Theorem | addsrmo 7810* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
| Theorem | mulsrmo 7811* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
| Theorem | addsrpr 7812 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
| Theorem | mulsrpr 7813 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
| Theorem | ltsrprg 7814 | Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))) | ||
| Theorem | gt0srpr 7815 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
| ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
| Theorem | 0nsr 7816 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) |
| ⊢ ¬ ∅ ∈ R | ||
| Theorem | 0r 7817 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 0R ∈ R | ||
| Theorem | 1sr 7818 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 1R ∈ R | ||
| Theorem | m1r 7819 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ -1R ∈ R | ||
| Theorem | addclsr 7820 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
| Theorem | mulclsr 7821 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
| Theorem | addcomsrg 7822 | Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) | ||
| Theorem | addasssrg 7823 | Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) | ||
| Theorem | mulcomsrg 7824 | Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) | ||
| Theorem | mulasssrg 7825 | Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))) | ||
| Theorem | distrsrg 7826 | Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))) | ||
| Theorem | m1p1sr 7827 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) |
| ⊢ (-1R +R 1R) = 0R | ||
| Theorem | m1m1sr 7828 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) |
| ⊢ (-1R ·R -1R) = 1R | ||
| Theorem | lttrsr 7829* | Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | ||
| Theorem | ltposr 7830 | Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| ⊢ <R Po R | ||
| Theorem | ltsosr 7831 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) |
| ⊢ <R Or R | ||
| Theorem | 0lt1sr 7832 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
| ⊢ 0R <R 1R | ||
| Theorem | 1ne0sr 7833 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) |
| ⊢ ¬ 1R = 0R | ||
| Theorem | 0idsr 7834 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
| Theorem | 1idsr 7835 | 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.) |
| ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
| Theorem | 00sr 7836 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
| Theorem | ltasrg 7837 | Ordering property of addition. (Contributed by NM, 10-May-1996.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
| Theorem | pn0sr 7838 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
| Theorem | negexsr 7839* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) |
| ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
| Theorem | recexgt0sr 7840* | The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) |
| ⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)) | ||
| Theorem | recexsrlem 7841* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) |
| ⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
| Theorem | addgt0sr 7842 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
| Theorem | ltadd1sr 7843 | Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.) |
| ⊢ (𝐴 ∈ R → 𝐴 <R (𝐴 +R 1R)) | ||
| Theorem | ltm1sr 7844 | Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R -1R) <R 𝐴) | ||
| Theorem | mulgt0sr 7845 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
| Theorem | aptisr 7846 | Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ ¬ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)) → 𝐴 = 𝐵) | ||
| Theorem | mulextsr1lem 7847 | Lemma for mulextsr1 7848. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| ⊢ (((𝑋 ∈ P ∧ 𝑌 ∈ P) ∧ (𝑍 ∈ P ∧ 𝑊 ∈ P) ∧ (𝑈 ∈ P ∧ 𝑉 ∈ P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))) | ||
| Theorem | mulextsr1 7848 | Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) | ||
| Theorem | archsr 7849* | For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.) |
| ⊢ (𝐴 ∈ R → ∃𝑥 ∈ N 𝐴 <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | ||
| Theorem | srpospr 7850* | Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | ||
| Theorem | prsrcl 7851 | Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ (𝐴 ∈ P → [〈(𝐴 +P 1P), 1P〉] ~R ∈ R) | ||
| Theorem | prsrpos 7852 | Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ (𝐴 ∈ P → 0R <R [〈(𝐴 +P 1P), 1P〉] ~R ) | ||
| Theorem | prsradd 7853 | Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → [〈((𝐴 +P 𝐵) +P 1P), 1P〉] ~R = ([〈(𝐴 +P 1P), 1P〉] ~R +R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
| Theorem | prsrlt 7854 | Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
| Theorem | prsrriota 7855* | Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) | ||
| Theorem | caucvgsrlemcl 7856* | Lemma for caucvgsr 7869. Terms of the sequence from caucvgsrlemgt1 7862 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | ||
| Theorem | caucvgsrlemasr 7857* | Lemma for caucvgsr 7869. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
| ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝐴 ∈ R) | ||
| Theorem | caucvgsrlemfv 7858* | Lemma for caucvgsr 7869. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → [〈((𝐺‘𝐴) +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | ||
| Theorem | caucvgsrlemf 7859* | Lemma for caucvgsr 7869. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → 𝐺:N⟶P) | ||
| Theorem | caucvgsrlemcau 7860* | Lemma for caucvgsr 7869. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) | ||
| Theorem | caucvgsrlembound 7861* | Lemma for caucvgsr 7869. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) | ||
| Theorem | caucvgsrlemgt1 7862* | Lemma for caucvgsr 7869. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N 𝑖 → ((𝐹‘𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))))) | ||
| Theorem | caucvgsrlemoffval 7863* | Lemma for caucvgsr 7869. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) | ||
| Theorem | caucvgsrlemofff 7864* | Lemma for caucvgsr 7869. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → 𝐺:N⟶R) | ||
| Theorem | caucvgsrlemoffcau 7865* | Lemma for caucvgsr 7869. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | ||
| Theorem | caucvgsrlemoffgt1 7866* | Lemma for caucvgsr 7869. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) | ||
| Theorem | caucvgsrlemoffres 7867* | Lemma for caucvgsr 7869. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
| Theorem | caucvgsrlembnd 7868* | Lemma for caucvgsr 7869. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
| Theorem | caucvgsr 7869* |
A Cauchy sequence of signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7779 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7868). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7864). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7779 to get a limit (see caucvgsrlemgt1 7862). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7862). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7867). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
| Theorem | ltpsrprg 7870 | Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) | ||
| Theorem | mappsrprg 7871 | Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R )) | ||
| Theorem | map2psrprg 7872* | Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| ⊢ (𝐶 ∈ R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥, 1P〉] ~R ) = 𝐴)) | ||
| Theorem | suplocsrlemb 7873* | Lemma for suplocsr 7876. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.) |
| ⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ P ∀𝑣 ∈ P (𝑢<P 𝑣 → (∃𝑞 ∈ 𝐵 𝑢<P 𝑞 ∨ ∀𝑞 ∈ 𝐵 𝑞<P 𝑣))) | ||
| Theorem | suplocsrlempr 7874* | Lemma for suplocsr 7876. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.) |
| ⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ P (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) | ||
| Theorem | suplocsrlem 7875* | Lemma for suplocsr 7876. The set 𝐴 has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.) |
| ⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
| Theorem | suplocsr 7876* | An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
| Syntax | cc 7877 | Class of complex numbers. |
| class ℂ | ||
| Syntax | cr 7878 | Class of real numbers. |
| class ℝ | ||
| Syntax | cc0 7879 | Extend class notation to include the complex number 0. |
| class 0 | ||
| Syntax | c1 7880 | Extend class notation to include the complex number 1. |
| class 1 | ||
| Syntax | ci 7881 | Extend class notation to include the complex number i. |
| class i | ||
| Syntax | caddc 7882 | Addition on complex numbers. |
| class + | ||
| Syntax | cltrr 7883 | 'Less than' predicate (defined over real subset of complex numbers). |
| class <ℝ | ||
| Syntax | cmul 7884 | Multiplication on complex numbers. The token · is a center dot. |
| class · | ||
| Definition | df-c 7885 | Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ ℂ = (R × R) | ||
| Definition | df-0 7886 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) |
| ⊢ 0 = 〈0R, 0R〉 | ||
| Definition | df-1 7887 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) |
| ⊢ 1 = 〈1R, 0R〉 | ||
| Definition | df-i 7888 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) |
| ⊢ i = 〈0R, 1R〉 | ||
| Definition | df-r 7889 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ ℝ = (R × {0R}) | ||
| Definition | df-add 7890* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) |
| ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
| Definition | df-mul 7891* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) |
| ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
| Definition | df-lt 7892* | Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
| Theorem | opelcn 7893 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) |
| ⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
| Theorem | opelreal 7894 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
| Theorem | elreal 7895* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) |
| ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
| Theorem | elrealeu 7896* | The real number mapping in elreal 7895 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
| ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
| Theorem | elreal2 7897 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) |
| ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
| Theorem | 0ncn 7898 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7899 which is a related property. (Contributed by NM, 2-May-1996.) |
| ⊢ ¬ ∅ ∈ ℂ | ||
| Theorem | cnm 7899* | A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | ltrelre 7900 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ <ℝ ⊆ (ℝ × ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |