| Intuitionistic Logic Explorer Theorem List (p. 79 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cauappcvgprlemopl 7801* | Lemma for cauappcvgpr 7817. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) | ||
| Theorem | cauappcvgprlemlol 7802* | Lemma for cauappcvgpr 7817. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | cauappcvgprlemopu 7803* | Lemma for cauappcvgpr 7817. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | cauappcvgprlemupu 7804* | Lemma for cauappcvgpr 7817. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) | ||
| Theorem | cauappcvgprlemrnd 7805* | Lemma for cauappcvgpr 7817. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | ||
| Theorem | cauappcvgprlemdisj 7806* | Lemma for cauappcvgpr 7817. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | cauappcvgprlemloc 7807* | Lemma for cauappcvgpr 7817. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) | ||
| Theorem | cauappcvgprlemcl 7808* | Lemma for cauappcvgpr 7817. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | cauappcvgprlemladdfu 7809* | Lemma for cauappcvgprlemladd 7813. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (2nd ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆ (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgprlemladdfl 7810* | Lemma for cauappcvgprlemladd 7813. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆ (1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgprlemladdru 7811* | Lemma for cauappcvgprlemladd 7813. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉) ⊆ (2nd ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | ||
| Theorem | cauappcvgprlemladdrl 7812* | Lemma for cauappcvgprlemladd 7813. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉) ⊆ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | ||
| Theorem | cauappcvgprlemladd 7813* | Lemma for cauappcvgpr 7817. This takes 𝐿 and offsets it by the positive fraction 𝑆. (Contributed by Jim Kingdon, 23-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}〉) | ||
| Theorem | cauappcvgprlem1 7814* | Lemma for cauappcvgpr 7817. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑅 ∈ Q) ⇒ ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑄)}, {𝑢 ∣ (𝐹‘𝑄) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgprlem2 7815* | Lemma for cauappcvgpr 7817. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑅 ∈ Q) ⇒ ⊢ (𝜑 → 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹‘𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}〉) | ||
| Theorem | cauappcvgprlemlim 7816* | Lemma for cauappcvgpr 7817. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}〉) ∧ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}〉)) | ||
| Theorem | cauappcvgpr 7817* |
A Cauchy approximation has a limit. A Cauchy approximation, here
𝐹, is similar to a Cauchy sequence but
is indexed by the desired
tolerance (that is, how close together terms needs to be) rather than
by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p.
(varies) with a few differences such as that we are proving the
existence of a limit without anything about how fast it converges
(that is, mere existence instead of existence, in HoTT terms), and
that the codomain of 𝐹 is Q rather than P. We also
specify that every term needs to be larger than a fraction 𝐴, to
avoid the case where we have positive terms which "converge"
to zero
(which is not a positive real).
This proof (including its lemmas) is similar to the proofs of caucvgpr 7837 and caucvgprpr 7867 but is somewhat simpler, so reading this one first may help understanding the other two. (Contributed by Jim Kingdon, 19-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:Q⟶Q) & ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) & ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑞 ∈ Q ∀𝑟 ∈ Q (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝑦 +P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}〉) ∧ 𝑦<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}〉)) | ||
| Theorem | archrecnq 7818* | Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴) | ||
| Theorem | archrecpr 7819* | Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) | ||
| Theorem | caucvgprlemk 7820 | Lemma for caucvgpr 7837. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.) |
| ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) ⇒ ⊢ (𝜑 → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑄) | ||
| Theorem | caucvgprlemnkj 7821* | Lemma for caucvgpr 7837. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → ¬ ((𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q (*Q‘[〈𝐽, 1o〉] ~Q )) <Q 𝑆)) | ||
| Theorem | caucvgprlemnbj 7822* | Lemma for caucvgpr 7837. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → 𝐵 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) ⇒ ⊢ (𝜑 → ¬ (((𝐹‘𝐵) +Q (*Q‘[〈𝐵, 1o〉] ~Q )) +Q (*Q‘[〈𝐽, 1o〉] ~Q )) <Q (𝐹‘𝐽)) | ||
| Theorem | caucvgprlemm 7823* | Lemma for caucvgpr 7837. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprlemopl 7824* | Lemma for caucvgpr 7837. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) | ||
| Theorem | caucvgprlemlol 7825* | Lemma for caucvgpr 7837. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | caucvgprlemopu 7826* | Lemma for caucvgpr 7837. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprlemupu 7827* | Lemma for caucvgpr 7837. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) | ||
| Theorem | caucvgprlemrnd 7828* | Lemma for caucvgpr 7837. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | ||
| Theorem | caucvgprlemdisj 7829* | Lemma for caucvgpr 7837. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprlemloc 7830* | Lemma for caucvgpr 7837. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) | ||
| Theorem | caucvgprlemcl 7831* | Lemma for caucvgpr 7837. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | caucvgprlemladdfu 7832* | Lemma for caucvgpr 7837. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → (2nd ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) +Q 𝑆) <Q 𝑢}) | ||
| Theorem | caucvgprlemladdrl 7833* | Lemma for caucvgpr 7837. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q ((𝐹‘𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | ||
| Theorem | caucvgprlem1 7834* | Lemma for caucvgpr 7837. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) ⇒ ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) | ||
| Theorem | caucvgprlem2 7835* | Lemma for caucvgpr 7837. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) ⇒ ⊢ (𝜑 → 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹‘𝐾) +Q 𝑄) <Q 𝑢}〉) | ||
| Theorem | caucvgprlemlim 7836* | Lemma for caucvgpr 7837. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q (*Q‘[〈𝑗, 1o〉] ~Q )) <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑥 ∈ Q ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q 𝑢}〉))) | ||
| Theorem | caucvgpr 7837* |
A Cauchy sequence of positive fractions with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
1 / 𝑛 of the nth term (it should later be
able to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a fraction 𝐴, to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7817 and caucvgprpr 7867. Reading cauappcvgpr 7817 first (the simplest of the three) might help understanding the other two. (Contributed by Jim Kingdon, 18-Jun-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶Q) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q (*Q‘[〈𝑛, 1o〉] ~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q (*Q‘[〈𝑛, 1o〉] ~Q ))))) & ⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑥 ∈ Q ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑘)}, {𝑢 ∣ (𝐹‘𝑘) <Q 𝑢}〉<P (𝑦 +P 〈{𝑙 ∣ 𝑙 <Q 𝑥}, {𝑢 ∣ 𝑥 <Q 𝑢}〉) ∧ 𝑦<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹‘𝑘) +Q 𝑥) <Q 𝑢}〉))) | ||
| Theorem | caucvgprprlemk 7838* | Lemma for caucvgprpr 7867. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.) |
| ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐾, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) | ||
| Theorem | caucvgprprlemloccalc 7839* | Lemma for caucvgprpr 7867. Rearranging some expressions for caucvgprprlemloc 7858. (Contributed by Jim Kingdon, 8-Feb-2021.) |
| ⊢ (𝜑 → 𝑆 <Q 𝑇) & ⊢ (𝜑 → 𝑌 ∈ Q) & ⊢ (𝜑 → (𝑆 +Q 𝑌) = 𝑇) & ⊢ (𝜑 → 𝑋 ∈ Q) & ⊢ (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌) & ⊢ (𝜑 → 𝑀 ∈ N) & ⊢ (𝜑 → (*Q‘[〈𝑀, 1o〉] ~Q ) <Q 𝑋) ⇒ ⊢ (𝜑 → (〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q (*Q‘[〈𝑀, 1o〉] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[〈𝑀, 1o〉] ~Q )) <Q 𝑢}〉 +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑀, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑀, 1o〉] ~Q ) <Q 𝑢}〉)<P 〈{𝑙 ∣ 𝑙 <Q 𝑇}, {𝑢 ∣ 𝑇 <Q 𝑢}〉) | ||
| Theorem | caucvgprprlemell 7840* | Lemma for caucvgprpr 7867. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.) |
| ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝑋 ∈ (1st ‘𝐿) ↔ (𝑋 ∈ Q ∧ ∃𝑏 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q (*Q‘[〈𝑏, 1o〉] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[〈𝑏, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | ||
| Theorem | caucvgprprlemelu 7841* | Lemma for caucvgprpr 7867. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.) |
| ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝑋 ∈ (2nd ‘𝐿) ↔ (𝑋 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemcbv 7842* | Lemma for caucvgprpr 7867. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑎, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑎, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑎, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑎, 1o〉] ~Q ) <Q 𝑢}〉)))) | ||
| Theorem | caucvgprprlemval 7843* | Lemma for caucvgprpr 7867. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) ⇒ ⊢ ((𝜑 ∧ 𝐴 <N 𝐵) → ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐴, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐴, 1o〉] ~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐴, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐴, 1o〉] ~Q ) <Q 𝑞}〉))) | ||
| Theorem | caucvgprprlemnkltj 7844* | Lemma for caucvgprpr 7867. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnkeqj 7845* | Lemma for caucvgprpr 7867. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnjltk 7846* | Lemma for caucvgprpr 7867. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnkj 7847* | Lemma for caucvgprpr 7867. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
| Theorem | caucvgprprlemnbj 7848* | Lemma for caucvgprpr 7867. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐵 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) ⇒ ⊢ (𝜑 → ¬ (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐵, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐵, 1o〉] ~Q ) <Q 𝑢}〉) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉)<P (𝐹‘𝐽)) | ||
| Theorem | caucvgprprlemml 7849* | Lemma for caucvgprpr 7867. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | caucvgprprlemmu 7850* | Lemma for caucvgprpr 7867. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿)) | ||
| Theorem | caucvgprprlemm 7851* | Lemma for caucvgprpr 7867. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprprlemopl 7852* | Lemma for caucvgprpr 7867. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) | ||
| Theorem | caucvgprprlemlol 7853* | Lemma for caucvgprpr 7867. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) | ||
| Theorem | caucvgprprlemopu 7854* | Lemma for caucvgprpr 7867. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprprlemupu 7855* | Lemma for caucvgprpr 7867. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) | ||
| Theorem | caucvgprprlemrnd 7856* | Lemma for caucvgprpr 7867. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) ∧ ∀𝑡 ∈ Q (𝑡 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | ||
| Theorem | caucvgprprlemdisj 7857* | Lemma for caucvgprpr 7867. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
| Theorem | caucvgprprlemloc 7858* | Lemma for caucvgprpr 7867. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑡 ∈ Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿)))) | ||
| Theorem | caucvgprprlemcl 7859* | Lemma for caucvgprpr 7867. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | caucvgprprlemclphr 7860* | Lemma for caucvgprpr 7867. The putative limit is a positive real. Like caucvgprprlemcl 7859 but without a disjoint variable condition between 𝜑 and 𝑟. (Contributed by Jim Kingdon, 19-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
| Theorem | caucvgprprlemexbt 7861* | Lemma for caucvgprpr 7867. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑇 ∈ P) & ⊢ (𝜑 → (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) | ||
| Theorem | caucvgprprlemexb 7862* | Lemma for caucvgprpr 7867. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝑅 ∈ N) ⇒ ⊢ (𝜑 → (((𝐿 +P 𝑄) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑅) +P 𝑄) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P (𝑄 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉))<P ((𝐹‘𝑅) +P 𝑄))) | ||
| Theorem | caucvgprprlemaddq 7863* | Lemma for caucvgprpr 7867. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑋 ∈ P) & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → ∃𝑟 ∈ N (𝑋 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑟) +P 𝑄)) ⇒ ⊢ (𝜑 → 𝑋<P (𝐿 +P 𝑄)) | ||
| Theorem | caucvgprprlem1 7864* | Lemma for caucvgprpr 7867. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → (𝐹‘𝐾)<P (𝐿 +P 𝑄)) | ||
| Theorem | caucvgprprlem2 7865* | Lemma for caucvgprpr 7867. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → 𝐿<P ((𝐹‘𝐾) +P 𝑄)) | ||
| Theorem | caucvgprprlemlim 7866* | Lemma for caucvgprpr 7867. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) | ||
| Theorem | caucvgprpr 7867* |
A Cauchy sequence of positive reals with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
1 / 𝑛 of the nth term (it should later be
able to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a given value 𝐴, to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This is similar to caucvgpr 7837 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7817) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝑦 +P 𝑥) ∧ 𝑦<P ((𝐹‘𝑘) +P 𝑥)))) | ||
| Theorem | suplocexprlemell 7868* | Lemma for suplocexpr 7880. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) | ||
| Theorem | suplocexprlem2b 7869 | Lemma for suplocexpr 7880. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | ||
| Theorem | suplocexprlemss 7870* | Lemma for suplocexpr 7880. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → 𝐴 ⊆ P) | ||
| Theorem | suplocexprlemml 7871* | Lemma for suplocexpr 7880. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) | ||
| Theorem | suplocexprlemrl 7872* | Lemma for suplocexpr 7880. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q (𝑞 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ ∪ (1st “ 𝐴)))) | ||
| Theorem | suplocexprlemmu 7873* | Lemma for suplocexpr 7880. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (2nd ‘𝐵)) | ||
| Theorem | suplocexprlemru 7874* | Lemma for suplocexpr 7880. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | ||
| Theorem | suplocexprlemdisj 7875* | Lemma for suplocexpr 7880. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ¬ (𝑞 ∈ ∪ (1st “ 𝐴) ∧ 𝑞 ∈ (2nd ‘𝐵))) | ||
| Theorem | suplocexprlemloc 7876* | Lemma for suplocexpr 7880. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ ∪ (1st “ 𝐴) ∨ 𝑟 ∈ (2nd ‘𝐵)))) | ||
| Theorem | suplocexprlemex 7877* | Lemma for suplocexpr 7880. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐵 ∈ P) | ||
| Theorem | suplocexprlemub 7878* | Lemma for suplocexpr 7880. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ 𝐵<P 𝑦) | ||
| Theorem | suplocexprlemlub 7879* | Lemma for suplocexpr 7880. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (𝑦<P 𝐵 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) | ||
| Theorem | suplocexpr 7880* | An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | ||
| Definition | df-enr 7881* | Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | ||
| Definition | df-nr 7882 | Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
| ⊢ R = ((P × P) / ~R ) | ||
| Definition | df-plr 7883* | Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
| ⊢ +R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑓)〉] ~R ))} | ||
| Definition | df-mr 7884* | Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
| ⊢ ·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} | ||
| Definition | df-ltr 7885* | Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | ||
| Definition | df-0r 7886 | Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 0R = [〈1P, 1P〉] ~R | ||
| Definition | df-1r 7887 | Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | ||
| Definition | df-m1r 7888 | Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) |
| ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | ||
| Theorem | enrbreq 7889 | Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrer 7890 | The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| ⊢ ~R Er (P × P) | ||
| Theorem | enreceq 7891 | Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R = [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrex 7892 | The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ~R ∈ V | ||
| Theorem | ltrelsr 7893 | Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <R ⊆ (R × R) | ||
| Theorem | addcmpblnr 7894 | Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉 ~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) | ||
| Theorem | mulcmpblnrlemg 7895 | Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))) | ||
| Theorem | mulcmpblnr 7896 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
| Theorem | prsrlem1 7897* | Decomposing signed reals into positive reals. Lemma for addsrpr 7900 and mulsrpr 7901. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
| Theorem | addsrmo 7898* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
| Theorem | mulsrmo 7899* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
| Theorem | addsrpr 7900 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |