![]() |
Intuitionistic Logic Explorer Theorem List (p. 79 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mulcmpblnr 7801 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
Theorem | prsrlem1 7802* | Decomposing signed reals into positive reals. Lemma for addsrpr 7805 and mulsrpr 7806. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
Theorem | addsrmo 7803* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
Theorem | mulsrmo 7804* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
Theorem | addsrpr 7805 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
Theorem | mulsrpr 7806 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
Theorem | ltsrprg 7807 | Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))) | ||
Theorem | gt0srpr 7808 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
Theorem | 0nsr 7809 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) |
⊢ ¬ ∅ ∈ R | ||
Theorem | 0r 7810 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) |
⊢ 0R ∈ R | ||
Theorem | 1sr 7811 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
⊢ 1R ∈ R | ||
Theorem | m1r 7812 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
⊢ -1R ∈ R | ||
Theorem | addclsr 7813 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
Theorem | mulclsr 7814 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
Theorem | addcomsrg 7815 | Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) | ||
Theorem | addasssrg 7816 | Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) | ||
Theorem | mulcomsrg 7817 | Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) | ||
Theorem | mulasssrg 7818 | Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))) | ||
Theorem | distrsrg 7819 | Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))) | ||
Theorem | m1p1sr 7820 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) |
⊢ (-1R +R 1R) = 0R | ||
Theorem | m1m1sr 7821 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) |
⊢ (-1R ·R -1R) = 1R | ||
Theorem | lttrsr 7822* | Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.) |
⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | ||
Theorem | ltposr 7823 | Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
⊢ <R Po R | ||
Theorem | ltsosr 7824 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) |
⊢ <R Or R | ||
Theorem | 0lt1sr 7825 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
⊢ 0R <R 1R | ||
Theorem | 1ne0sr 7826 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) |
⊢ ¬ 1R = 0R | ||
Theorem | 0idsr 7827 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
Theorem | 1idsr 7828 | 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
Theorem | 00sr 7829 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
Theorem | ltasrg 7830 | Ordering property of addition. (Contributed by NM, 10-May-1996.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
Theorem | pn0sr 7831 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) |
⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
Theorem | negexsr 7832* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) |
⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
Theorem | recexgt0sr 7833* | The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) |
⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)) | ||
Theorem | recexsrlem 7834* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) |
⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | addgt0sr 7835 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
Theorem | ltadd1sr 7836 | Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.) |
⊢ (𝐴 ∈ R → 𝐴 <R (𝐴 +R 1R)) | ||
Theorem | ltm1sr 7837 | Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.) |
⊢ (𝐴 ∈ R → (𝐴 +R -1R) <R 𝐴) | ||
Theorem | mulgt0sr 7838 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
Theorem | aptisr 7839 | Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ ¬ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)) → 𝐴 = 𝐵) | ||
Theorem | mulextsr1lem 7840 | Lemma for mulextsr1 7841. (Contributed by Jim Kingdon, 17-Feb-2020.) |
⊢ (((𝑋 ∈ P ∧ 𝑌 ∈ P) ∧ (𝑍 ∈ P ∧ 𝑊 ∈ P) ∧ (𝑈 ∈ P ∧ 𝑉 ∈ P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))) | ||
Theorem | mulextsr1 7841 | Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) | ||
Theorem | archsr 7842* | For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.) |
⊢ (𝐴 ∈ R → ∃𝑥 ∈ N 𝐴 <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | ||
Theorem | srpospr 7843* | Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | ||
Theorem | prsrcl 7844 | Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ (𝐴 ∈ P → [〈(𝐴 +P 1P), 1P〉] ~R ∈ R) | ||
Theorem | prsrpos 7845 | Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ (𝐴 ∈ P → 0R <R [〈(𝐴 +P 1P), 1P〉] ~R ) | ||
Theorem | prsradd 7846 | Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → [〈((𝐴 +P 𝐵) +P 1P), 1P〉] ~R = ([〈(𝐴 +P 1P), 1P〉] ~R +R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
Theorem | prsrlt 7847 | Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
Theorem | prsrriota 7848* | Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) | ||
Theorem | caucvgsrlemcl 7849* | Lemma for caucvgsr 7862. Terms of the sequence from caucvgsrlemgt1 7855 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | ||
Theorem | caucvgsrlemasr 7850* | Lemma for caucvgsr 7862. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝐴 ∈ R) | ||
Theorem | caucvgsrlemfv 7851* | Lemma for caucvgsr 7862. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → [〈((𝐺‘𝐴) +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | ||
Theorem | caucvgsrlemf 7852* | Lemma for caucvgsr 7862. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → 𝐺:N⟶P) | ||
Theorem | caucvgsrlemcau 7853* | Lemma for caucvgsr 7862. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) | ||
Theorem | caucvgsrlembound 7854* | Lemma for caucvgsr 7862. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) | ||
Theorem | caucvgsrlemgt1 7855* | Lemma for caucvgsr 7862. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N 𝑖 → ((𝐹‘𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))))) | ||
Theorem | caucvgsrlemoffval 7856* | Lemma for caucvgsr 7862. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) | ||
Theorem | caucvgsrlemofff 7857* | Lemma for caucvgsr 7862. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → 𝐺:N⟶R) | ||
Theorem | caucvgsrlemoffcau 7858* | Lemma for caucvgsr 7862. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | ||
Theorem | caucvgsrlemoffgt1 7859* | Lemma for caucvgsr 7862. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) | ||
Theorem | caucvgsrlemoffres 7860* | Lemma for caucvgsr 7862. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
Theorem | caucvgsrlembnd 7861* | Lemma for caucvgsr 7862. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
Theorem | caucvgsr 7862* |
A Cauchy sequence of signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7772 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7861). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7857). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7772 to get a limit (see caucvgsrlemgt1 7855). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7855). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7860). (Contributed by Jim Kingdon, 20-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
Theorem | ltpsrprg 7863 | Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) | ||
Theorem | mappsrprg 7864 | Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R )) | ||
Theorem | map2psrprg 7865* | Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
⊢ (𝐶 ∈ R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥, 1P〉] ~R ) = 𝐴)) | ||
Theorem | suplocsrlemb 7866* | Lemma for suplocsr 7869. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.) |
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ P ∀𝑣 ∈ P (𝑢<P 𝑣 → (∃𝑞 ∈ 𝐵 𝑢<P 𝑞 ∨ ∀𝑞 ∈ 𝐵 𝑞<P 𝑣))) | ||
Theorem | suplocsrlempr 7867* | Lemma for suplocsr 7869. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.) |
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ P (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) | ||
Theorem | suplocsrlem 7868* | Lemma for suplocsr 7869. The set 𝐴 has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.) |
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Theorem | suplocsr 7869* | An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Syntax | cc 7870 | Class of complex numbers. |
class ℂ | ||
Syntax | cr 7871 | Class of real numbers. |
class ℝ | ||
Syntax | cc0 7872 | Extend class notation to include the complex number 0. |
class 0 | ||
Syntax | c1 7873 | Extend class notation to include the complex number 1. |
class 1 | ||
Syntax | ci 7874 | Extend class notation to include the complex number i. |
class i | ||
Syntax | caddc 7875 | Addition on complex numbers. |
class + | ||
Syntax | cltrr 7876 | 'Less than' predicate (defined over real subset of complex numbers). |
class <ℝ | ||
Syntax | cmul 7877 | Multiplication on complex numbers. The token · is a center dot. |
class · | ||
Definition | df-c 7878 | Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ ℂ = (R × R) | ||
Definition | df-0 7879 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) |
⊢ 0 = 〈0R, 0R〉 | ||
Definition | df-1 7880 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) |
⊢ 1 = 〈1R, 0R〉 | ||
Definition | df-i 7881 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) |
⊢ i = 〈0R, 1R〉 | ||
Definition | df-r 7882 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ ℝ = (R × {0R}) | ||
Definition | df-add 7883* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) |
⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
Definition | df-mul 7884* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) |
⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
Definition | df-lt 7885* | Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
Theorem | opelcn 7886 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) |
⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
Theorem | opelreal 7887 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
Theorem | elreal 7888* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) |
⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
Theorem | elrealeu 7889* | The real number mapping in elreal 7888 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
Theorem | elreal2 7890 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) |
⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
Theorem | 0ncn 7891 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7892 which is a related property. (Contributed by NM, 2-May-1996.) |
⊢ ¬ ∅ ∈ ℂ | ||
Theorem | cnm 7892* | A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | ltrelre 7893 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ <ℝ ⊆ (ℝ × ℝ) | ||
Theorem | addcnsr 7894 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
Theorem | mulcnsr 7895 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
Theorem | eqresr 7896 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
Theorem | addresr 7897 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
Theorem | mulresr 7898 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
Theorem | ltresr 7899 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
Theorem | ltresr2 7900 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |