![]() |
Intuitionistic Logic Explorer Theorem List (p. 79 of 145) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cr 7801 | Class of real numbers. |
class ℝ | ||
Syntax | cc0 7802 | Extend class notation to include the complex number 0. |
class 0 | ||
Syntax | c1 7803 | Extend class notation to include the complex number 1. |
class 1 | ||
Syntax | ci 7804 | Extend class notation to include the complex number i. |
class i | ||
Syntax | caddc 7805 | Addition on complex numbers. |
class + | ||
Syntax | cltrr 7806 | 'Less than' predicate (defined over real subset of complex numbers). |
class <ℝ | ||
Syntax | cmul 7807 | Multiplication on complex numbers. The token · is a center dot. |
class · | ||
Definition | df-c 7808 | Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ ℂ = (R × R) | ||
Definition | df-0 7809 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) |
⊢ 0 = 〈0R, 0R〉 | ||
Definition | df-1 7810 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) |
⊢ 1 = 〈1R, 0R〉 | ||
Definition | df-i 7811 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) |
⊢ i = 〈0R, 1R〉 | ||
Definition | df-r 7812 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ ℝ = (R × {0R}) | ||
Definition | df-add 7813* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) |
⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
Definition | df-mul 7814* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) |
⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
Definition | df-lt 7815* | Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
Theorem | opelcn 7816 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) |
⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
Theorem | opelreal 7817 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
Theorem | elreal 7818* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) |
⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
Theorem | elrealeu 7819* | The real number mapping in elreal 7818 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
Theorem | elreal2 7820 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) |
⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
Theorem | 0ncn 7821 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7822 which is a related property. (Contributed by NM, 2-May-1996.) |
⊢ ¬ ∅ ∈ ℂ | ||
Theorem | cnm 7822* | A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | ltrelre 7823 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
⊢ <ℝ ⊆ (ℝ × ℝ) | ||
Theorem | addcnsr 7824 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
Theorem | mulcnsr 7825 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
Theorem | eqresr 7826 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
Theorem | addresr 7827 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
Theorem | mulresr 7828 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
Theorem | ltresr 7829 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
Theorem | ltresr2 7830 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
Theorem | dfcnqs 7831 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6594, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 7808), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
⊢ ℂ = ((R × R) / ◡ E ) | ||
Theorem | addcnsrec 7832 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7831 and mulcnsrec 7833. (Contributed by NM, 13-Aug-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
Theorem | mulcnsrec 7833 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6593, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7831. (Contributed by NM, 13-Aug-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
Theorem | addvalex 7834 | Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7927. (Contributed by Jim Kingdon, 14-Jul-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) | ||
Theorem | pitonnlem1 7835* | Lemma for pitonn 7838. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
⊢ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈1o, 1o〉] ~Q }, {𝑢 ∣ [〈1o, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 = 1 | ||
Theorem | pitonnlem1p1 7836 | Lemma for pitonn 7838. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.) |
⊢ (𝐴 ∈ P → [〈(𝐴 +P (1P +P 1P)), (1P +P 1P)〉] ~R = [〈(𝐴 +P 1P), 1P〉] ~R ) | ||
Theorem | pitonnlem2 7837* | Lemma for pitonn 7838. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.) |
⊢ (𝐾 ∈ N → (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 + 1) = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈(𝐾 +N 1o), 1o〉] ~Q }, {𝑢 ∣ [〈(𝐾 +N 1o), 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | pitonn 7838* | Mapping from N to ℕ. (Contributed by Jim Kingdon, 22-Apr-2020.) |
⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | ||
Theorem | pitoregt0 7839* | Embedding from N to ℝ yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → 0 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | pitore 7840* | Embedding from N to ℝ. Similar to pitonn 7838 but separate in the sense that we have not proved nnssre 8912 yet. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) | ||
Theorem | recnnre 7841* | Embedding the reciprocal of a natural number into ℝ. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) | ||
Theorem | peano1nnnn 7842* | One is an element of ℕ. This is a counterpart to 1nn 8919 designed for real number axioms which involve natural numbers (notably, axcaucvg 7890). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ 1 ∈ 𝑁 | ||
Theorem | peano2nnnn 7843* | A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8920 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7890). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) | ||
Theorem | ltrennb 7844* | Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 13-Jul-2021.) |
⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) | ||
Theorem | ltrenn 7845* | Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 12-Jul-2021.) |
⊢ (𝐽 <N 𝐾 → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | recidpipr 7846* | Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) |
⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) | ||
Theorem | recidpirqlemcalc 7847 | Lemma for recidpirq 7848. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → (𝐴 ·P 𝐵) = 1P) ⇒ ⊢ (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P))) | ||
Theorem | recidpirq 7848* | A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 · 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 1) | ||
Theorem | axcnex 7849 | The complex numbers form a set. Use cnex 7926 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
⊢ ℂ ∈ V | ||
Theorem | axresscn 7850 | The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7894. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
⊢ ℝ ⊆ ℂ | ||
Theorem | ax1cn 7851 | 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 7895. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
⊢ 1 ∈ ℂ | ||
Theorem | ax1re 7852 |
1 is a real number. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly; instead, use ax-1re 7896.
In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 7895 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.) |
⊢ 1 ∈ ℝ | ||
Theorem | axicn 7853 | i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 7897. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
⊢ i ∈ ℂ | ||
Theorem | axaddcl 7854 | Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7898 be used later. Instead, in most cases use addcl 7927. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | axaddrcl 7855 | Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7899 be used later. Instead, in most cases use readdcl 7928. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | axmulcl 7856 | Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7900 be used later. Instead, in most cases use mulcl 7929. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | axmulrcl 7857 | Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7901 be used later. Instead, in most cases use remulcl 7930. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Theorem | axaddf 7858 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 7854. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 7924. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ + :(ℂ × ℂ)⟶ℂ | ||
Theorem | axmulf 7859 | Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 7856. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 7925. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ · :(ℂ × ℂ)⟶ℂ | ||
Theorem | axaddcom 7860 |
Addition commutes. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly, nor should the proven axiom ax-addcom 7902 be used later.
Instead, use addcom 8084.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | axmulcom 7861 | Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7903 be used later. Instead, use mulcom 7931. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | axaddass 7862 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7904 be used later. Instead, use addass 7932. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | axmulass 7863 | Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 7905. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | axdistr 7864 | Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7906 be used later. Instead, use adddi 7934. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | axi2m1 7865 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7907. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
⊢ ((i · i) + 1) = 0 | ||
Theorem | ax0lt1 7866 |
0 is less than 1. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly; instead, use ax-0lt1 7908.
The version of this axiom in the Metamath Proof Explorer reads 1 ≠ 0; here we change it to 0 <ℝ 1. The proof of 0 <ℝ 1 from 1 ≠ 0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
⊢ 0 <ℝ 1 | ||
Theorem | ax1rid 7867 | 1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7909. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
Theorem | ax0id 7868 |
0 is an identity element for real addition. Axiom for
real and
complex numbers, derived from set theory. This construction-dependent
theorem should not be referenced directly; instead, use ax-0id 7910.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
Theorem | axrnegex 7869* | Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7911. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
Theorem | axprecex 7870* |
Existence of positive reciprocal of positive real number. Axiom for
real and complex numbers, derived from set theory. This
construction-dependent theorem should not be referenced directly;
instead, use ax-precex 7912.
In treatments which assume excluded middle, the 0 <ℝ 𝐴 condition is generally replaced by 𝐴 ≠ 0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
Theorem | axcnre 7871* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7913. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | axpre-ltirr 7872 | Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7914. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | ||
Theorem | axpre-ltwlin 7873 | Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7915. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | ||
Theorem | axpre-lttrn 7874 | Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7916. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
Theorem | axpre-apti 7875 |
Apartness of reals is tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 7917.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) | ||
Theorem | axpre-ltadd 7876 | Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 7918. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
Theorem | axpre-mulgt0 7877 | The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7919. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
Theorem | axpre-mulext 7878 |
Strong extensionality of multiplication (expressed in terms of
<ℝ). Axiom for real and
complex numbers, derived from set theory.
This construction-dependent theorem should not be referenced directly;
instead, use ax-pre-mulext 7920.
(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
Theorem | rereceu 7879* | The reciprocal from axprecex 7870 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
Theorem | recriota 7880* | Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.) |
⊢ (𝑁 ∈ N → (℩𝑟 ∈ ℝ (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 · 𝑟) = 1) = 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | axarch 7881* |
Archimedean axiom. The Archimedean property is more naturally stated
once we have defined ℕ. Unless we find
another way to state it,
we'll just use the right hand side of dfnn2 8910 in stating what we mean by
"natural number" in the context of this axiom.
This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7921. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | ||
Theorem | peano5nnnn 7882* | Peano's inductive postulate. This is a counterpart to peano5nni 8911 designed for real number axioms which involve natural numbers (notably, axcaucvg 7890). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ ((1 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁 ⊆ 𝐴) | ||
Theorem | nnindnn 7883* | Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8924 designed for real number axioms which involve natural numbers (notably, axcaucvg 7890). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ 𝑁 → 𝜏) | ||
Theorem | nntopi 7884* | Mapping from ℕ to N. (Contributed by Jim Kingdon, 13-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑁 → ∃𝑧 ∈ N 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑧, 1o〉] ~Q }, {𝑢 ∣ [〈𝑧, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 = 𝐴) | ||
Theorem | axcaucvglemcl 7885* | Lemma for axcaucvg 7890. Mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉) ∈ R) | ||
Theorem | axcaucvglemf 7886* | Lemma for axcaucvg 7890. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → 𝐺:N⟶R) | ||
Theorem | axcaucvglemval 7887* | Lemma for axcaucvg 7890. Value of sequence when mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈(𝐺‘𝐽), 0R〉) | ||
Theorem | axcaucvglemcau 7888* | Lemma for axcaucvg 7890. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | ||
Theorem | axcaucvglemres 7889* | Lemma for axcaucvg 7890. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
Theorem | axcaucvg 7890* |
Real number completeness axiom. A Cauchy sequence with a modulus of
convergence converges. This is basically Corollary 11.2.13 of [HoTT],
p. (varies). The HoTT book theorem has a modulus of convergence
(that is, a rate of convergence) specified by (11.2.9) in HoTT whereas
this theorem fixes the rate of convergence to say that all terms after
the nth term must be within 1 / 𝑛 of the nth term (it should later
be able to prove versions of this theorem with a different fixed rate
or a modulus of convergence supplied as a hypothesis).
Because we are stating this axiom before we have introduced notations for ℕ or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of ℩. This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7922. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
Theorem | axpre-suploclemres 7891* | Lemma for axpre-suploc 7892. The result. The proof just needs to define 𝐵 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ℝ), and apply suplocsr 7799. (Contributed by Jim Kingdon, 24-Jan-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) & ⊢ 𝐵 = {𝑤 ∈ R ∣ 〈𝑤, 0R〉 ∈ 𝐴} ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Theorem | axpre-suploc 7892* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7923. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Axiom | ax-cnex 7893 | The complex numbers form a set. Proofs should normally use cnex 7926 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
⊢ ℂ ∈ V | ||
Axiom | ax-resscn 7894 | The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7850. (Contributed by NM, 1-Mar-1995.) |
⊢ ℝ ⊆ ℂ | ||
Axiom | ax-1cn 7895 | 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 7851. (Contributed by NM, 1-Mar-1995.) |
⊢ 1 ∈ ℂ | ||
Axiom | ax-1re 7896 | 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7852. Proofs should use 1re 7947 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.) |
⊢ 1 ∈ ℝ | ||
Axiom | ax-icn 7897 | i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7853. (Contributed by NM, 1-Mar-1995.) |
⊢ i ∈ ℂ | ||
Axiom | ax-addcl 7898 | Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7854. Proofs should normally use addcl 7927 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Axiom | ax-addrcl 7899 | Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7855. Proofs should normally use readdcl 7928 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Axiom | ax-mulcl 7900 | Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7856. Proofs should normally use mulcl 7929 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |